Сложное движение точки. Переносное движение Абсолютное и относительное движение

§ 2. 5. Движение: абсолютное, относительное, переносное. Теорема Эйлера. Угловая скорость.

Дополнительно к неподвижным осям Oxyz (система S) введем в рассмотрение некоторое подвижное твердое тело и неизменно связанную с ним систему прямоугольных осей координат O’x’y’z’ (система S’).

Движение точки относительно подвижной системы осей S’ называется относительным движением.

Движение точки относительно неподвижных осей S называется абсолютным движением.

Переносным движением точки за интервал времени (t,t+Dt) называется то движение по отношению к осям S, которая эта точка имела бы, если бы в момент времени t и на интервал (t,t+Dt) она была неизменно связана с подвижной системой осей и, следовательно, перемещалась бы вместе с этой системой.

Траектория, скорость и ускорение называются абсолютными, относительными или переносными, смотря по тому, относятся ли они к движению абсолютному, относительному или переносному.

Теорема Эйлера: Если относительно системы S система S" имеет одну неподвижную точку, то перемещение S" из одного произвольного положения в любое другое может быть совершено одним поворотом на определенный угол относительно оси, проходящей через эту неподвижную точку.

Для доказательства достаточно показать возможность перевода одним поворотом дуги, например, .

Проведем два экватора: a, перпендикулярный середине x 1 "x 2 ", и b, перпендикулярный середине z 1 "z 2 ". Получим две точки пересечения этих экваторов – с и d.

Dx 1 "z 1 "d = Dz 2 "x 2 "d

(так как x 1 "z 1 " = x 2 "z 2 ", а x 1 "d = x 2 "d в силу того, что точка d лежит на экваторе, перпендикулярном середине x 1 "x 2 ",

z 1 "d = z 2 "d по той же причине)

Таким образом, Ðx 1 "dz 1 " = Ðz 2 "dx 2 " и угол между дугами x 1 "d и x 2 "d равен углу между дугами z 1 "d и z 2 "d, то есть нужно повернуть x 1 "z 1 " относительно оси dO"c на угол x 1 "dz 1 " (или равный ему z 2 "dx 2 ")

Теорема Эйлера справедлива и для конечных поворотов и для бесконечно малых. Хотя последовательность бесконечно малых поворотов может быть любой – результат будет тем же, конечные же повороты не коммутируют. Это тем более справедливо для бесконечно малых поворотов, чем ближе дуги, описываемые какой-либо точкой, к хордам, соединяющим концы дуг.

При рассмотрении задач о движении тела с одной закрепленной точкой, которые имеют большое практическое значение, для определения (фиксации) положения системы S" относительно S широко используются три угла Эйлера.

Пересечение плоскостей O"xy и O"x"y" дает прямую, которую называют линией узлов (орт линии узлов - ). Первый угол Эйлера j - угол между осью O"x и линией узлов. Второй угол y - угол между линией узлов и осью O"x". Третий угол q - угол между осями O"z и O"z".

Эти три угла однозначно определяют положение системы S" относительно S

Таким образом, при бесконечно малом повороте системы S" относительно S на углы dj,dy,dq (некоторые из них могут быть равными нулю) их можно заменить одним поворотом на угол dc вокруг некоторой оси, проходящей через точку O".

Введем в рассмотрение вектор бесконечно малого поворота:

(здесь направлен по оси вращения по правилу правого винта)

Величина и направление вектора dc при сложном движении могут изменяться. Ось называется осью мгновенного вращения. Посмотрим, что происходит с ортами системы S" при ее повороте на угол

§ 2. 6. Сложное движение точки.

продифференцировав это соотношение по времени, получим:

Абсолютная скорость точки (относительно системы S),

Скорость начала координат S" относительно S,

Не является скоростью точки М относительно системы S", так как орты этой системы являются функциями времени.

,

используя формулы (2.5.1) будем иметь:

Последнее слагаемое означает, что производная берется при неизменных ортах системы O’x’y’z’, .

Теперь для скоростей имеем:

здесь v h -переносная, v – абсолютная, v’ – относительная скорость точки, то есть получена связь этих скоростей. Переносная скорость состоит из двух слагаемых: первое присутствует в том случае, если подвижная система отсчета движется поступательно, второе появляется в том случае, если подвижная система отсчета совершает вращение.

Для получения связи ускорений продифференцируем по времени соотношение для скоростей:

Абсолютное ускорение, - ускорение начала координат S’ относительно S.

Сложное движение точки

Основные понятия

Во многих задачах движение точки приходится рассматривать относительно двух (и более) систем отсчета, движущихся друг относительно друга.

В простейшем случае сложное движение точки состоит из относительного и переносного движений. Определим эти движения.

Рассмотрим две системы отсчета движущиеся друг относительно друга. Одну систему отсчета O 1 x 1 y 1 z 1 примем за основную и неподвижную. Вторая система отсчета Oxyz будет двигаться относительно первой.

Движение точки относительно подвижной системы отсчета Oxyz называется относительным. Характеристики этого движения, такие как, траектория, скорость и ускорение, называются относительными. Их обозначают индексом r .

Движение точки относительно основной неподвижной системы отсчета O 1 x 1 y 1 z 1 называется абсолютным (или сложным). Траектория, скорость и ускорение этого движения называются абсолютными. Их обозначают без индекса.

Переносным движением точки называется движение, которое она совершает вместе с подвижной системой отсчета, как точка, жестко скрепленная с этой системой в рассматриваемый момент времени. Вследствие относительного движения движущаяся точка в различные моменты времени совпадает с различными точками тела S, с которым скреплена подвижная система отсчета. Переносной скоростью и переносным ускорением являются скорость и ускорение той точки тела S, с которой в данный момент совпадает движущаяся точка. Переносные скорость и ускорение обозначают индексом e .

Если траектории всех точек тела S, скрепленного с подвижной системой отсчета, изобразить на рисунке, то получим семейство линий – семейство траекторий переносного движения точки М. Вследствие относительного движения точки М в каждый момент времени она находится на одной из траекторий переносного движения.

Одно и то же абсолютное движение, выбирая различные подвижные системы отсчета, можно считать состоящим из разных переносных и соответственно относительных движений.

Сложение скоростей

Определим скорость абсолютного движения точки М, если известны скорости абсолютного и переносного движений этой точки.

За малый промежуток времени вдоль траектории точка М совершит относительное перемещение, определяемое вектором . Сама кривая , двигаясь вместе с подвижными осями, перейдет за тот же промежуток времени в новое положение Одновременно та точка кривой , с которой совпадала точка М, совершит переносное перемещение . В результате точка совершит перемещение .

Деля обе части равенства на и переходя к пределу, получим

Сложение ускорений при поступательном переносном движении.

Определим ускорение абсолютного движения точки в частном случае поступательного переносного движения.

Справедлива теорема . Если подвижная система отсчета движется поступательно относительно неподвижной , то все точки тела, скрепленного с этой системой, имеют одинаковые скорости и ускорения, равные скорости и ускорению начала координат подвижной системы О. Следовательно, для скорости и ускорения переносного движения имеем

Выразим относительную скорость в декартовых координатах

Подставляя в теорему о сложении скоростей значения переносной и относительной скоростей получаем

По определению

§ 20 . Относительное, переносное и абсолютное

движение точки

Сложным движением точки называется такое ее движение, при кото­ром она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за непод­вижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, со­вершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета ) и дви­жения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета ).

Движение точки по отношению к подвижной системе ко­ординат называется относительным движением точки . Скорость и ускорение этого движения называют относитель­ной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки .

Переносной скоростью и переносным ускорением точки на­зывают скорость и ускорение той, жестко связанной с под­вижной системой коор­динат точки, с которой совпадает в дан­ный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называ­ется абсолютным или сложным . Скорость и ускорение точки в этом движении называют абсолютной скоростью и абсолютным ускорением и обозначают и .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

§ 21 .Определение скорости точки при сложном

движении

Пусть имеется неподвижная система отсчета по отношению к кото­рой движется подвижная система отсчета . Относительно подвижной системы координат движет­ся точка (рис. 2.26). Уравнение движения точки , находящейся в сложном движении, можно задать векторным способом

,(2.67)

где - радиус-вектор точки , определяющий ее положение относительно

не­подвижной системы отсчета ;

Радиус-вектор, определяющий положение начала отсчета подвижной

системы координат ;

Радиус-вектор рассматриваемой точки , определяющий ее

положение относительно подвижной системы координат.

Пустькоординаты точки в подвижных осях. Тогда

,(2.68)

где - единичные векторы, направленные вдоль под­вижных осей . Подставляя (2.68) в равенство (2.67), полу­чим:

.(2.69)

При относительном движении координаты изменя­ются с течением времени. Чтобы найти скорость относитель­ного движения, нужно продиффе­ренцировать радиус-вектор по времени, учитывая его изменение только за счет относи­тельного движе­ния, то есть только за счет изменения коор­динат , а подвижную систему координат предполагать при этом неподвижной, то есть вектора считать не зависящими от времени. Дифференцируя равенство (2.68) по времени с учетом сде­ланных оговорок, получим относитель­ную скорость:

, (2.70)

где точки над величинами означают производные от этих ве­личин по времени:

, , .

Если относительного движения нет, то точка будет двигаться вместе с подвижной системой - координат и ско­рость точки будет равна переносной скорости. Таким обра­зом, выражение для переносной скорости можно полу­чить, если продифференцировать по времени радиус-вектор , считая не за­висящими от времени:

.(2.71)

Выражение для абсолютной скорости найдем, дифферен­цируя по времени , учитывая, что от времени зависят относительные координатыи орты подвижной системы координат:

.(2.72)

В соответствии с формулами (2.70), (2.71) первая скобка в (2.72) есть переносная ско­рость точки, а вторая - относитель­ная. Итак,

.(2.73)

Равенство (2.73) выражает теорему о сложении скоростей : абсолютная скорость точки равна геометрической сумме переносной и относительной скоро­стей.

Задача 2.9. Поезд движется по прямоли нейному горизонтальному пути с постоянной скоростью . Пассажир видит из окна вагона траектории капель дождя наклоненными к вертикали под углом . Определить абсолютную скорость падения дождевых капель отвесно падающего дождя, пренебрегая трением капель о стекло.

Решение. Капли дождя имеют абсолютную скорость

где - относительная скорость капли при ее движении по стеклу вагона;

Переносная скорость капли, равная скорости движения поезда.

Получившийся параллелограмм скоростей (рис. 2.27) диагональ делит на два равных треугольника. Рассмотрев любой из этих треугольников, находим

.

Переводим полученную скорость падения капель в :

.

§ 22 .Определение ускорения точки при сложном

движении

Выражение для относительного ускорения точки можно получить, диффе­ренцируя относительную скорость (2.70), учи­тывая ее и зменение только за счет относительного движения, то есть за счет изменения относительных координат точки , , . Вектора же следует считать постоянными, так как движение не­движной системы координат не учитывается при определении относительной скорости и относительного ускорения точки. Итак, имеем

,(2.74)

Переносное ускорение получим, дифференцируя по време­ни равенство (2.71), считая, что точка покоится по отношению к подвижной системе координат, т. е. что относительные координаты точки , , не зависят от времени.

.(2.75)

Абсолютное ускорение получим, дифференцируя выраже­ние для абсолютной скорости (2.72), учитывая, что с течени­ем времени изменяются как относительные координаты , , точки, так и орты подвижной системы координат

.(2.76)

Видно, что первая скобка в (2.76) есть переносное ускорение, третья - относи­тельное ускорение. Вторая скобка есть до­полнительное или кориолисово ускорение :

.(2.77)

Итак, равенство (2.76) можно записать в виде

.(2.78)

Эта формула и выражает теорему Кориолиса : в случае непоступательного переносного движения абсолютное ускорение точки равно векторной сумме

переносного, от­носительного и поворот­ного ускорений.

Преобразуем формулу (2.77) дляускорения Кориолиса. Для производных единичныхвекторов подвижной системы координат имеют место следующие формулы Пуассона :

; ; .(2.79)

Здесь - вектор мгновенной угловой скорости подвижной системы коорди­нат. Знаком обозначено векторное произ­ведение векторов.

Подставляя формулы (2.79) в (2.77), получим:

Выражение в скобках есть не что иное, как относитель­ная скорость (см. (2.70)). Окончательно получим:

.(2.80)

Итак, ускорение Кориолиса равно удвоенному векторно­му произведению мгновенной угловой скорости подвижной системы координат на вектор отно­сительной скорости .

По общему правилу определения направления, векторного произведения имеем: ускорение Кориолиса направлено пер­пендикулярно плоскости, прохо­дящей через вектора и в ту сторону, откуда поворот вектора к вектору на меньший угол виден против хода часовой стрелки (рис. 2.28).

Из формулы (2.80) вытекает также, что величина ускоре­ния Кориолиса

.(2.81)

Отсюда следует, что ускорение Кориолиса равно нулю в трех случаях :

1) если , т. е. в случае поступательного переносного движения или в моменты обращения в нуль угловой скорости непоступательного перенос­ного движения;

2) если , т.е. в случае относительного покоя точки или в моменты об­раще­ний в нуль относительной скорости точки;

3) если , т. е. в случае, когда вектор относительной скорости то­чки параллелен вектору угловой скорости переносного движения , как, напри­мер, при движении точки вдоль образующей цилиндра, вращающе­гося вокруг своей оси.

Задача 2.10. По железнодорожному п ути, проложенному по параллели северной ши­роты, движется тепловоз со скоростью с запада на восток. Найти корио­лисово ускорение тепловоза.

Решение. Пренебрегая размерами тепло­воза, будем рассматривать его как некоторую точку (точка на рис. 2.29). Точка совершает сложное движение. За переносное движение примем враща­тельное движение точки вместе с Землей, а за относительное движение – движение этой точки по отношению к Земле с постоянной скоростью .

Величина ускоре­ния Кориолиса согласно (2.81) равна

,

где - угловая скорость вращения Земли.

Найдем угловую скорость вращения Земли. За сутки Земля делает один оборот. Угол, соответствующий одному обороту, равен и число секунд в сутках равно , отсюда

.

Положение и направление вектора ускорения Кориолиса определяем по об­щему правилу определения направления векторного произведения. Вектор ускорения Кориолиса находится на прямой , так как он должен быть перпендикулярен векторам и , и направлен в сторону противополож­ную направлению векторов и .


Направление полного ускорения определим по тангенсу уг­ла α, который полное ускорение образует с нормальным ускоре­нием (рис. 52). Получим

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат .

Переносная скорость и переносное ускорение точки обозначается индексом е : , .

Переносной скоростью (ускорением ) точки М в данный момент времени называют вектор, равный скорости (ускорению ) той точки m подвижной системы координат, с которой совпадает в данный момент движущая точка М (рис. 8.1).

Проведем радиус-вектор начала координат (рис. 8.1). Из рисунка видно, что

Чтобы найти переносную скорость точки в заданный момент времени необходимо продифференцировать радиус-вектор при условии, что координаты точки x, y, z не изменяются в данный момент времени:

Переносное ускорение соответственно равно

Таким образом для определения переносной скорости и переносного ускорения в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точку m тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М , и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.

Сложным движением точки называется такое ее движение, при кото­ром она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за непод­вижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, со­вершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета ) и дви­жения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета ).

Движение точки по отношению к подвижной системе ко­ординат называется относительным движением точки . Скорость и ускорение этого движения называют относитель­ной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки .

Переносной скоростью ипереносным ускорением точкина­зывают скорость и ускорение той, жестко связанной с под­вижной системой коор­динат точки, с которой совпадает в дан­ный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называ­ется абсолютным или сложным . Скорость и ускорение точки в этом движении называют абсолютнойскоростью и абсолютным ускорением и обозначают и .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

§ 21. Определение скорости точки при сложном

движении

Пусть имеется неподвижная система отсчета по отношению к кото­рой движется подвижная система отсчета . Относительно подвижной системы координат движет­ся точка (рис. 2.26). Уравнение движения точки , находящейся в сложном движении, можно задать векторным способом

где - радиус-вектор точки , определяющий ее положение относительно

не­подвижной системы отсчета ;

Радиус-вектор, определяющий положение начала отсчета подвижной

системы координат ;

Радиус-вектор рассматриваемой точки , определяющий ее

положение относительно подвижной системы координат.

Пустькоординаты точки в подвижных осях. Тогда

, (2.68)

где - единичные векторы, направленные вдоль под­вижных осей . Подставляя (2.68) в равенство (2.67), полу­чим:

При относительном движении координаты изменя­ются с течением времени. Чтобы найти скорость относитель­ного движения, нужно продиффе­ренцировать радиус-вектор по времени, учитывая его изменение только за счет относи­тельного движе­ния, то есть только за счет изменения коор­динат , а подвижную систему координат предполагать при этом неподвижной, то есть вектора считать не зависящими от времени. Дифференцируя равенство (2.68) по времени с учетом сде­ланных оговорок, получим относитель­ную скорость.

СЛОЖНЫЕ ДВИЖЕНИЯ ТОЧКИ

§ 1. Абсолютное, относительное и переносное движения точки

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О 1 ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

1. Движение точки относительно системы координат Охуz (рис. 53) называется абсолютным.

2. Движение точки относительно подвижной системы координат O 1 ξηζ называется населенным.

3. Переносным движением точки называют движение той точки тела, связанного с подвижной системой координат О 1 ξηζ , относи­тельно неподвижной системы координат, с которой в данный момент совпадает рассматриваемая движущаяся точка.

Таким образом, переносное движение вызвано движением под­вижной системы координат по отношению к неподвижной. В приве­денном примере с колесом переносное движение точки обода колеса обусловлено поступательным движением системы координат О 1 ξηζ по отношению к неподвижной системе координат Аху.

Уравнения абсолютного движения точки получим, выразив коор­динаты точки х, у,z как функции времени:

х=х(t ), у = у(t ), z = z (t ).

Уравнения относительного движения точки имеют вид

ξ = ξ (t ), η = η (t), ζ = ζ (t ).

В параметрической форме уравнения (11.76) выражают уравне­ния абсолютной траектории, а уравнения (11.77) - соответственно уравнения относительной траектории.

Различают также абсолютную, переносную и от­носительную скорость и соответственно абсолютное, переносное и относительное ускорения точки. Абсо­лютную скорость обозначают υ a , относительную - υ r , переносную - υ е Соответственно ускорения обознача­ют: ω а , ω r и ω е .

Основной задачей кинематики сложного движения точки является установление зависимости между скоростями и ускорениями точки в двух системах координат: неподвижной и под­вижной.

Для доказательства теорем о сложении скоростей и ускоре­ний в сложном движении точки введем понятие о локальной или относительной производной.


Теорема о сложении скоростей

Теорема . При сложном (составном) движении точки ее абсолютная скорость υ a равна векторной сумме отно­сительной υ r и переносной υ е скоростей.

Пусть точка М совершает одновременные движения по отношению к неподвижной и подвижной системам координат (рис. 56). Обозначим угловую скорость поворота системы коор­динат Оξηζ через ω . Положение точки М определяется радиусом-вектором r .

Установим соотношение между скоростями точки М по отноше­нию к двум системам координат - неподвижной и подвижной. На основании доказанной в предыдущем параграфе теоремы

Из кинематики точки известно, что первая производная от ра­диуса-вектора движущейся точки по времени выражает скорость этой точки. Поэтому = r = υ а - абсолютная скорость, =υ r - относительная скорость,

а ω xr = υ е - переносная ско­рость точки М. Следовательно,

υ а = υ r + υ е

Формула (11.79) выражает правило параллелограмма скоростей. Модуль абсолютной скорости найдем по теореме косинусов:



В некоторых задачах кинематики требуется определить относи­тельную скорость υ r . Из (11.79) следует

υ r = υ а +(- υ е) .

Таким образом, чтобы построить вектор относительной скорости, нужно геометрически сложить абсолютную скорость с век­тором, равным по абсолютной величине, но противоположно направ­ленным переносной скорости.