Что скрывает число Авогадро, и как посчитать молекулы? Закон авогадро в химии На что указывает число авогадро.

Стал настоящим прорывом в теоретической химии и способствовал тому, что гипотетические догадки превратились в великие открытия в области газовой химии. Предположения химиков получили убедительные доказательства в виде математических формул и простых соотношений, а результаты экспериментов теперь позволили делать далеко идущие выводы. Кроме этого, итальянский исследователь вывел количественную характеристику числа структурных частиц химического элемента. Число Авогадро впоследствии стало одной из важнейших констант в современной физике и химии.

Закон объемных отношений

Честь быть первооткрывателем газовых реакций принадлежат Гей-Люссаку, французскому ученому конца XVIII века. Этот исследователь дал миру известный закон, которому подчиняются все реакции, связанные с расширением газов. Гей-Люссак измерял объемы газов перед реакцией и объемы, которые получались в результате химического взаимодействия. В результате эксперимента ученый сделал вывод, известный как закон простых объемных отношений. Суть его в том, что объемы газов до и после соотносятся между собой как целые небольшие числа.

Например, при взаимодействии газообразных веществ, соответствующих, например, одному объему кислорода и двум объемам водорода, получается два объема парообразной воды и так далее.

Закон Гей-Люссака справедлив, если все измерения объемов происходят при одинаковых показателях давления и температуры. Этот закон оказался весьма важен для итальянского физика Авогадро. Руководствуясь им, он вывел свое предположение, которое имело далеко идущие последствия в химии и физике газов, и вычислил число Авогадро.

Итальянский ученый

Закон Авогадро

В 1811 году Авогадро пришел к пониманию того, что в равных объемах произвольных газов при постоянных значениях температуры и давления содержится одно и то же число молекул.

Этот закон, позднее названный в честь итальянского ученого, вводил в науку представление о мельчайших частичках вещества - молекулах. Химия разделилась на эмпирическую науку, какой она была, и науку, оперирующую количественными категориями, которой она стала. Авогадро особенно подчеркивал тот момент, что атомы и молекулы не являются одним и тем же, и что атомы являются составляющими кирпичиками для всех молекул.

Закон итальянского исследователя позволил прийти к выводу о количестве атомов в молекулах различных газов. Например, после вывода закона Авогадро подтвердил предположение, что молекулы таких газов, как кислород, водород, хлор, азот, состоят из двух атомов. Также стало возможным установление атомных масс и молекулярных масс элементов, состоящих из разных атомов.

Атомные и молекулярные массы

При вычислении атомного веса какого-либо элемента первоначально за единицу измерения была принята масса водорода как самого легкого химического вещества. Но атомные массы многих химических веществ вычисляются как соотношение их кислородных соединений, то есть отношение кислорода и водорода принималось как 16:1. Эта формула была несколько неудобной для измерений, поэтому эталоном атомной массы приняли массу изотопа углерода - самого распространенного вещества на земле.

На основе закона Авогадро основан принцип определения масс различных газообразных веществ в молекулярном эквиваленте. В 1961 году принимается единая система отсчета относительных атомных величин, в основу которой легла условная единица, равная 1/12 части массы одного изотопа углерода 12 С. Сокращенное название атомной единицы массы - а.е.м. Согласно данной шкале, атомная масса кислорода равна 15,999 а.е.м, а углерода - 1,0079 а.е.м. Так возникло новое определение: относительная атомная масса - это масса атома вещества, выраженная в а.е.м.

Масса молекулы вещества

Любое вещество состоит из молекул. Масса такой молекулы выражается в а.е.м, это значение равняется сумме всех атомов, входящих в ее состав. К примеру, молекула водорода имеет массу 2,0158 а.е.м, то есть 1,0079 х 2, а молекулярную массу воды можно вычислить по ее химической формуле H 2 O. Два атома водорода и единственный атом кислорода в сумме дают значение 18,0152 а.е.м.

Значение атомной массы для каждого вещества принято называть относительной молекулярной массой.

До недавнего времени вместо понятия "атомная масса" использовалось словосочетание «атомный вес». В настоящее время оно не используется, но до сих пор встречается в старых учебниках и научных трудах.

Единица количества вещества

Вместе с единицами объема и массы в химии используется особая мера количества вещества, называемая моль. Эта единица показывает то количество вещества, которое вмещает в себя столько молекул, атомов и других структурных частиц, сколько их содержится в 12 г углерода изотопа 12 С. При практическом применении моля вещества следует принимать во внимание, какие именно частицы элементов имеются в виду - ионы, атомы или молекулы. Например, моль ионов H + и молекул H 2 - это совершенно разные меры.

В настоящее время с большой точностью измерено количество вещества в моле вещества.

Практические расчеты показывают, что количество структурных единиц в моле составляет 6,02 х 10 23 . Эта константа имеет название «число Авогадро». Названная в честь итальянского ученого, эта химическая величина показывает число структурных единиц в моле любого вещества, независимо от его внутренней структуры, состава и происхождения.

Мольная масса

Масса одного моля вещества в химии имеет название "мольная масса", эта единица выражается соотношением г/моль. Применяя значение мольной массы на практике, можно видеть, что мольная масса водорода составляет 2,02158 г/моль, кислорода - 1,0079 г/моль и так далее.

Следствия закона Авогадро

Закон Авогадро вполне применим для определения количества вещества при вычислении объема газа. Одинаковое количество молекул любого газообразного вещества при неизменных условиях занимает равный объем. С другой стороны, 1 моль любого вещества содержит неизменное число молекул. Напрашивается вывод: при неизменных температуре и давлении один моль газообразного вещества занимает постоянный объем и содержит равное количество молекул. Число Авогадро утверждает, что в объеме 1 моля газа содержится 6,02 х 10 23 молекул.

Расчет объема газ для нормальных условий

Нормальные условия в химии - это атмосферное давление 760 мм рт. ст. и температура 0 о C. При этих параметрах экспериментально установлено, что масса одного литра кислорода равна 1,43 кг. Следовательно, объем одного моля кислорода равен 22,4 литра. При вычислении объема любого газа результаты показывали одно и то же значение. Так постоянная Авогадро сделала еще один вывод касательно объемов различных газообразных веществ: при нормальных условиях один моль любого газообразного элемента занимает 22,4 литра. Эта постоянная величина получила название мольного объема газа.

Январь 21, 2017

Зная количество вещества в молях и число Авогадро очень легко посчитать, сколько молекул содержится в этом веществе. Достаточно просто умножить число Авогадро на количество вещества.

N=N A *ν

И если вы пришли в поликлинику сдавать анализы, ну, скажем, кровь на сахар, зная число Авогадро, вы легко сможете посчитать количество молекул сахара в вашей крови. Ну, к примеру, анализ показал 5 моль. Умножим этот результат на число Авогадро и получим 3 010 000 000 000 000 000 000 000 штук. Глядя на эту цифру становится понятно, почему отказались мерить молекулы штуками, и стали мерить молями.

Молярная масса (M).

Если же количество вещества неизвестно, то его можно найти, разделив массу вещества на его молярную массу.

N=N A * m / M .

Единственный вопрос, который может тут возникнуть: «что же такое молярная масса?» Нет, это не масса маляра, как может показаться!!! Молярная масса — это масса одного моля вещества. Тут все просто, если в одном моле содержится N A частиц (т.е. равное числу Авогадро) , то, умножая массу одной такой частицы m 0 на число Авогадро, мы получим молярную массу.

M=m 0 *N A .

Молярная масса — это масса одного моля вещества.

И хорошо если она известна, а если нет? Придется вычислять массу одной молекулы m 0 . Но и это не проблема. Необходимо знать только её химическую формулу и иметь под рукой таблицу Менделеева.

Относительная молекулярная масса (M r).

Если количество молекул в веществе величина очень большая, то масса одной молекулы m0 напротив, величина очень маленькая. Поэтому для удобства расчетов была введена относительная молекулярная масса (M r) . Это отношение массы одной молекулы или атома вещества, к 1 / 12 массы атома углерода. Но пусть это вас не пугает, для атомов её указывают в таблице Менделеева, а для молекул она рассчитывается как сумма относительных молекулярных масс всех атомов, входящих в молекулу. Относительная молекулярная масса измеряется в атомных единицах масс (а.е.м) , в пересчете на килограммы 1 а.е.м.=1,67 10 -27 кг. Зная это, мы можем легко определить массу одной молекулы, умножив относительную молекулярную массу на 1,67 10 -27 .

m 0 = M r *1,67*10 -27 .

Относительная молекулярная масса — отношение массы одной молекулы или атома вещества, к 1 / 12 массы атома углерода.

Связь между молярной и молекулярной массами.

Вспомним формулу для нахождения молярной массы:

M=m 0 *N A .

Так как m 0 = M r * 1,67 10 -27 , мы можем выразить молярную массу как:

M=M r *N A *1,67 10 -27 .

Теперь если умножить число Авогадро N A на 1,67 10 -27 , мы получим 10 -3 , то есть чтобы узнать молярную массу вещества, достаточно только умножить его молекулярную массу на 10 -3 .

M=M r *10 -3

Но не спешите все это делать вычисляя количество молекул. Если нам известна масса вещества m, то разделив её на массу молекулы m 0 , мы получим количество молекул в этом веществе.

N=m / m 0

Конечно неблагодарное это дело молекулы считать, мало того, что они маленькие, так еще и движутся постоянно. Того и гляди собьешься, и придется считать заново. Но в науке, как в армии — есть такое слово «надо», и поэтому даже атомы и молекулы были посчитаны…

Физическая величина, равная количеству структурных элементов (которыми являются молекулы, атомы и т.п.) на один моль вещества, называется числом Авогадро. Официально принятое на сегодняшний день его значение составляет NA = 6,02214084(18)×1023 моль−1, оно было утверждено в 2010 году. В 2011 были опубликованы результаты новых исследований, они считаются более точными, но на данный момент официально не утверждены.

Закон Авогадро имеет огромное значение в развитии химии, он позволил вычислять вес тел, которые могут менять состояние, становясь газообразными или парообразными. Именно на основе закона Авогадро начала свое развитие атомно-молекулярная теория, следующая из кинетической теории газов.

Более того, с помощью закона Авогадро разработан способ получения молекулярной массы растворенных веществ. Для этого законы идеальных газов были распространены и на разбавленные растворы, взяв за основу мысль, что растворенное вещество распределится по объему растворителя, как газ распределяется в сосуде. Также закон Авогадро дал возможность определить истинные атомные массы целого ряда химических элементов.

Практическое использование числа Авогадро

Константа используется при расчетах химических формул и в процессе составления уравнений химических реакций. С помощью нее определяют относительные молекулярные массы газов и число молекул в одном моле любого вещества.

Через число Авогадро вычисляется универсальная газовая постоянная, она получается путем умножения этой константы на постоянную Больцмана. Кроме того, умножив число Авогадро и элементарный электрический заряд, можно получить постоянную Фарадея.

Использование следствий закона Авогадро

Первое следствие закона гласит: «Один моль газа (любого) при равных условиях будет занимать один объем». Таким образом, в нормальных условиях объем одного моля любого газа равен 22,4 литра (эта величина называется молярным объемом газа), а используя уравнение Менделеева-Клапейрона можно определить объем газа при любом давлении и температуре.

Второе следствие закона: «Молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа ко второму». Иными словами, при одинаковых условиях, зная отношение плотности двух газов, можно определить их молярные массы.

Во времена Авогадро его гипотеза была недоказуема теоретически, однако позволяла легко устанавливать экспериментальным путем состав молекул газа и определять их массу. Со временем под его эксперименты была подведена теоретическая база, и теперь число Авогадро находит применение

Закон Авогадро был сформулирован итальянским химиком Амадео Авогадро в 1811 году и имел большое значение для развития химии того времени. Впрочем, и сегодня он не потерял своей актуальности и значимости. Попробуем же сформулировать закон Авогадро, звучать он будет примерно так.

Формулировка закона Авогадро

Итак, закон Авогадро гласит, что при одинаковых температурах и в равных объемах газов будет содержаться одинаковое число молекул, независимо, как от их химической природы, так и физических свойств. Данное число является некой физической константой, равной количеству , молекул, ионов содержащихся в одном моле.

Первоначально закон Авогадро был лишь гипотезой ученого, но позже эта гипотеза была подтверждена большим количеством экспериментов, после чего она и вошла в науку под названием «закон Авогадро», которому суждено было стать основным законом для идеальных газов.

Формула закона Авогадро

Сам первооткрыватель закона полагал, что физическая константа является большой величиной, но какой именно не знал. Уже после его смерти в ходе многочисленных экспериментов было установлено точное число атомов, содержащихся в 12 г углерода (именно 12 г – атомная единица массы углерода) или же в молярном объеме газа равному 22,41 л. Константу эту на честь ученого назвали «числом Авогадро», обозначают его как NA, реже L и она равна 6.022*10 23 . Иными словами число молекул любого газа в объеме 22,41 л будет одинаковым как для легких, так и тяжелых газов.

Математическую формулу закона Авогадро можно написать так:

Где, V - объем газа; n - количество вещества, которое является отношением массы вещества к его молярной массе; VM - константа пропорциональности или молярный объем.

Применение закона Авогадро

Дальнейшее практическое применение закона Авогадро очень сильно помогло химикам определить химические формулы многих соединений.

Замечательные работы Перрена, сыгравшие исключительную роль в деле утверждения молекулярных представлений, связаны с использованием полученной выше барометрической формулы. Основная идея опытов Перрена сводилась к предположению, что законы молекулярно-кинетической теории определяют поведение не только атомов и молекул, но и гораздо более крупных частиц, состоящих из многих тысяч молекул. Исходя из весьма общих соображений, которые здесь не будут рассматриваться, можно предполагать, что средние кинетические энергии очень мелких частиц, совершающих броуновское движение в жидкости, совпадают со средними кинетическими энергиями молекул газа, если только температура жидкости и температура газа одинаковы. Точно так же распределение по высоте частиц, взвешенных в жидкости, подчиняется тому же закону, что и распределение по высоте молекул газа. Подобный вывод очень важен, поскольку на основании его возможна количественная проверка закона распределения. Проверку можно осуществить путем непосредственного подсчета с помощью микроскопа количества взвешенных частиц, находящихся в жидкости на разной высоте.

Уравнение (36) распределения частиц по высоте

удобно в этом случае переписать, разделив числитель и знаменатель дроби, стоящей в правой части уравнения, на число Авогадро

При этом следует заметить, что отношение - соответствует массе частицы а отношение равно средней кинетическои энергии частицы [сравните уравнение (28)]. Вводя эти обозначения, получим:

Если теперь опытным путем определить количества частиц и соответствующие двум различным значениям то можно будет написать:

Вычитая из первого уравнения второе, найдем:

Из этого соотношения можно определить если только знать массу частицы

При всей простоте и ясности основной идеи опыты Перрена были связаны с преодолением больших трудностей. В качестве объекта исследования им были выбраны водные эмульсии мастики и гуммигута, которые подвергались центрифугированию для получения эмульсий, состоящих из зернышек одинакового размера. Размер зернышек, которые считались шариками, определялся по скорости их оседания. За движением отдельного зернышка следить было невозможно и потому наблюдалась скорость оседания верхней границы эмульсии, т. е. средняя скорость оседания многих тысяч зернышек. Зная плотность эмульгированного вещества и определяя размеры зернышек эмульсии, можно было вычислить их массы. Далее необходимо было определить числа С этой целью к предметному стеклышку для микроскопических наблюдений Перрен приклеил второе стекло с просверленным в нем круглым отверстием, так что образовалась цилиндрическая прозрачная кювета. Поместив в кювету каплю эмульсии и закрыв для предотвращения испарения кювету покровным стеклышком, можно было с помощью микроскопа наблюдать зернышки эмульсии. Если воспользоваться объективом с небольшой глубиной поля зрения, то в микроскопе будут видны только зернышки, расположенные в очень тонком слое жидкости. Практически в этих опытах можно сосчитать лишь небольшое количество зернышек, поскольку их число непрерывно меняется. Для преодоления этого затруднения в фокальной

плоскости окуляра помещался непрозрачный экран с маленьким круглым отверстием. Благодаря этому поле зрения микроскопа сильно уменьшалось, и наблюдатель мог сразу определить, сколько зернышек в данный момент находится в поле зрения (рис. 12).

Повторяя подобные наблюдения через правильные промежутки времени, записывая наблюдаемые числа зерен и усредняя полученные данные, Перрен показал, что среднее число зерен на данном уровне стремится к некоторому определенному пределу, соответствующему плотности эмульсии на этом уровне. Для того чтобы проиллюстрировать трудоемкость этих опытов, можно указать, что для получения точного результата необходимо было производить несколько тысяч измерений.

Рис. 12. Распределение зерен эмульсии.

Определив с желаемой степенью точности плотность эмульсии на некотором уровне Перрен перемещал микроскоп в вертикальном направлении и измерял плотность эмульсии на втором уровне Тщательно выполненные измерения показали, что распределение зернышек эмульсии по высоте подчиняется барометрической формуле (уравнение 37).