Ионные жидкости применение. Ионная жидкость

Ионные жидкости относятся к так называемым «зелёным растворителям», которые соответствуют принципам зелёной химии . Некоторые ионные жидкости, например, 1-бутил-3-метилимидазолий хлорид, являются относительно эффективными растворителями для целлюлозы . В классических растворителях этот процесс происходит только в очень жёстких условиях.

История

Первая публикация вышла в 1888 году. Габриэль сообщал в ней о этаноламмоний нитрате, который имеет температуру плавления 52−55 °C . В 1914 году Пауль Вальден получил первую ионную жидкость с температурой плавления ниже комнатной: нитрат этиламмония + − , который имеет температуру плавления 12 °C . После этого ионные жидкости на время были забыты, и считались лишь лабораторным курьёзом. В 1951 году Харли получил ионные жидкости из хлороалюминатов, которые использовал для электроосаждения алюминия . В 1963 году Йоук сообщил о том, что смеси хлорида меди (I) с хлоридами алкиламмония зачастую жидкие . В 1967 Свэйн использовал бензоат тетра-н-гексиламмония для исследования кинетики электрохимических реакций. В период с 70 по 80-е годы хлороалюминаты использовались для спектро- и электрохимических исследований комплексов переходных металлов. В 1981 году впервые были использованы, как растворитель и катализатор одновременно, для проведения реакции Фриделя - Крафтса . В 1990 нобелевский лауреат Ив Шовен применил ионные жидкости для двухфазового катализа . В этом же году Остерйонг использовал ионные жидкости для полимеризации этилена при участии катализатора Циглера-Натта . Прорыв в исследовании наступил в 1992 году, когда Вилкес и Заворотко, работая над поиском новых электролитов для батарей , сообщили о получении первых ионных жидкостей устойчивых к воздуху и влаге - солей имидазолия с анионами − и MeCO 2 − . После этого началось активное изучение ионных жидкостей. Количество издаваемых статей и книг постоянно растёт. В 2002 году было зафиксировано больше 500 публикаций, на 2006-й год почти 2000. Фирмы по продаже химических реактивов на данный день предлагают большой выбор коммерчески доступных ионных жидкостей. В 2009 году Министерство энергетики США (DOE) выделило грант в $5,13 миллиона молодой аризонской компании Fluidic Energy на постройку прототипов долговечных металло-воздушных батарей с удельной ёмкостью на порядок большей, чем у литиево-ионных аккумуляторов. Роль электролита должен играть не водный раствор, а ионная жидкость. Соответственно, новый тип аккумулятора получил название Metal-Air Ionic Liquid Battery.

Свойства

Физические свойства

Ионные жидкости в твёрдом состоянии представляют собой порошки либо воскообразные субстанции белого, либо желтоватого цвета. В жидком состоянии бесцветны, либо с желтоватым оттенком, который обусловлен небольшим количеством примесей. Одно из характерных свойств ионных жидкостей – это их высокая вязкость , которая затрудняет работу с ними. Основная характеристика ионных жидкостей это их низкая температура плавления, обусловленная стерической затрудненностью структуры , которая усложнят кристаллизацию . Например, 1-этил-3-метилимидазолий дицианамид, , плавится при T пл = −21 °C , хлорид пиридиния, Cl, плавится при T пл = 144.5 °C но бромид 1-бутил-3,5-диметилпиридиния, [N -бутил-3,5-диметил-Py]Br, остекляется только ниже T затв = −24 °C.

Классификация

Получение и очистка

Синтез ионных жидкостей может быть сведен к двум стадиям: формирование катиона, и обмен аниона (когда требуется). Часто катион коммерчески доступен в виде галогенидной соли, и остаётся лишь заменить анион для получения требуемой ионной жидкости.

Реакции кватернизации

Формирование катиона может быть осуществлено как реакцией с кислотой , так и кватернизацией амина , фосфина или сульфида . Для выполнения последней часто используют галогеналканы или диалкилсульфаты. Реакция кватернизации очень проста - исходный амин (или фосфин) смешивают с необходимым алкилирующим агентом, нагревают при перемешивании, в большинстве случаев без растворителя. Время реакции и температура нагрева зависят от галогеналкана. Реакционная способность возрастает от хлора к йоду . Фторпроизводные таким способом получить невозможно.

Реакции обмена анионами

Можно разделить на две категории: прямая реакция галогенидных солей с кислотами Льюиса и метатезис (обмен) анионов. Получение ионных жидкостей реакцией кислоты Льюиса (чаще всего AlCl 3) с галидной солью было доминирующим способом на ранних этапах исследований.
Например, реакция получения ионной жидкости реакцией хлорида этилметилимидазолия с хлоридом алюминия (кислота Льюиса):
+ Cl − + AlCl 3 → + AlCl 4 −
Смысл реакции метатезиса солей заключается в формировании новой пары солей, которые можно было бы легко разделить, основываясь на их разных физических свойствах. Например, получая галогениды серебра (которые выпадают в осадок), или кислоты, которые могут быть легко отделены промыванием ионной жидкости водой (только для ионных жидкостей, несмешивающихся с водой). Например, реакция хлорида этилметилимидазолия с гексафторфосфорной кислотой
+ Cl − + HPF 6 → + PF 6 − + HCl
В результате реакции образуется несмешивающаяся с водой ионная жидкость, а побочный продукт, соляная кислота , остаётся растворенной в воде.

Получение в промышленности

Несмотря на легкость получения ионных жидкостей в лабораторных условиях, не все методы применимы в промышленных масштабах из-за своей дороговизны. Ионные жидкости позиционируются как «зеленые растворители», но при их производстве зачастую используются большие количества органических растворителей , зачастую для очистки ионных жидкостей от галогенов. Все эти недостатки должны быть устранены при переходе к многотоннажным синтезам. Например, фирма Solvent Innovation предложила, запатентовала и производит тонновыми количествами ионную жидкость, которая получила торговое название ECOENG 212. Она соответствует всем требованиям зеленой химии: она не токсична, способна разлагаться, попав в окружающую среду, не содержит примесей галогенов, при её производстве не применяются растворители, а единственным побочным продуктом является этиловый спирт.

Очистка

Поскольку ионные жидкости невозможно очистить перегонкой (давление их насыщенного пара практически равно нулю) то на практике очищают исходные соединения, из которых собираются получать ионную жидкость. Теоретически можно отогнать любые органические примеси из ионной жидкости, так как многие из последних устойчивы к нагреванию до очень высоких температур: не разлагаются вплоть до 400 °C. Также можно очистить ионные жидкости активированным углем , с последующей фильтрацией через короткую колонку с нейтральным оксидом алюминия . Воду отгоняют нагреванием в течение нескольких часов до 60 °C при пониженном давлении. В промышленности способность ионных жидкостей к очистке для повторного использования играет важнейшую роль из-за высокой стоимости последних. Эффективность варьируется от плохой до очень хорошей. Предлагаются различные инновационные методы. Например, экстракция продуктов суперкритическим CO 2 или мембранные техники . Кроме того, перспективным кажется направление сдачи ионных жидкостей предприятиям в аренду, для одноразового пользования. Таким образом одна фирма будет заниматься поставкой и очисткой растворителя для другой, которая будет экономить средства за счет многоразового использования растворителя.

См. также

Источники

  1. Вспомни о ЛИЗЕ (неопр.) . geektimes.ru. Дата обращения 15 февраля 2016.
  2. Ignatyev, Igor; Charlie Van Doorslaer, Pascal G.N. Mertens, Koen Binnemans, Dirk. E. de Vos. Synthesis of glucose esters from cellulose in ionic liquids (англ.) // Holzforschung: journal. - 2011. - Vol. 66 , no. 4 . - P. 417-425 . - DOI :10.1515/hf.2011.161 .
  3. S. Gabriel, J. Weiner. Ueber einige Abkömmlinge des Propylamins (нем.) // Chemische Berichte (англ.) русск. : magazin. - 1888. - Bd. 21 , Nr. 2 . - S. 2669-2679 . - DOI :10.1002/cber.18880210288 .
  4. P. Walden ,. Molecular weights and electrical conductivity of several fused salts. (англ.) // Bull. Acad. Sci. : journal. - 1914. - P. 405-422 .
  5. Frank. H. Hurley, Thomas P. Wier Jr. Electrodeposition of metals from fused quaternary ammonium salts. (англ.) // Journal of the Electrochemical Society (англ.) русск. : journal. - 1951. - Vol. 98 . - P. 203-206 .
  6. Yoke, John T., Weiss, Joseph F.; Tollin, Gordon. Reactions of triethylamine with copper (I) and copper (II) halides. (англ.) // Inorganic Chemistry: journal. - 1963. - Vol. 2(6) . - P. 1209-1216 .
  7. Chauvin, Yves ; Gilbert, Bernard; Guibard, Isabelle. Catalytic dimerization of alkenes by nickel complexes in organochloroaluminate molten salts. (англ.) // Chemical Communications (англ.) русск. : journal. - 1990. - Vol. 23 . - P. 1715-1716 .

Д. Г. Логинов, В. В. Никешин

ПРИМЕНЕНИЕ ИОННЫХ ЖИДКОСТЕЙ В ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

Ключевые слова: ионные жидкости, растворитель, катализатор.

Рассмотрены виды ионных жидкостей, основные свойства, способы получения и основные области применения в химических технологиях.

Key words: ionic liquid solvent, catalyst.

The types of ionic liquids, the main properties, methods of preparation and the main applications in chemical technologies.

Несмотря на существование широкого набора известных катализаторов, химическая технология и органический синтез постоянно нуждаются в новых, более эффективных и экологически приемлемых катализаторах,

реакционных средах и растворителях. При

разработке и усовершенствовании промышленных процессов основного и тонкого органического синтеза, так же как и в нефтехимии, необходимы новые подходы к решению существующих экономических и экологических проблем, связанных с большими энергетическими затратами и загрязнением окружающей среды. Современный

подход к решению проблемы замены летучих органических соединений, используемых в качестве растворителей в органическом синтезе, включает применение ионных жидкостей. Использование ионных жидкостей в качестве новых реакционных сред может решить проблему эмиссии

растворителей и повторного использования дорогостоящих катализаторов.

Термин «ионные жидкости» означает

вещества, которые являются жидкостями при температуре ниже 100°С и состоят из органических катионов, например, 1,3-диалкилимидазолия, Ы-

алкилпиридиния, тетралкиламмония,

тетраалкилфосфония, триалкилсульфония и разнообразных анионов: 01", [ВР4]", [РР6]", [$ЬР6]", СFзSОз", [(СFзSО2)2N]", РОБОз", RSОз", АгёОз", СР3СО2", СНзСО2", ЫОз", [А12С17]".

Природа аниона оказывает большое влияние на свойства ионных жидкостей -температуру плавления, термическую и электрохимическую стабильность и вязкость. Полярность, а также гидрофильность или гидрофобность ионных жидкостей можно оптимизировать путем соответствующего выбора пары катион/анион, и каждый новый анион и катион дает дополнительные возможности для варьирования свойств ионных жидкостей.

Повышенное внимание к ионным жидкостям обусловлено наличием у них следующих специфических свойств:

1. Широкий интервал жидкого состояния (> з00 °С) и низкие температуры плавления (Тпл < 100 °С).

2. Высокая удельная электропроводность.

3. Хорошая растворяющая способность по

отношению к разнообразным неорганическим, металлоорганическим и органическим

соединениям и полимерам природного и синтетического происхождения.

4. Каталитическая активность, обуславливающая повышение селективности органических реакций и выхода целевого продукта.

5. Нелетучесть, возможность многократного использования.

6. Негорючесть, невзрывоопасность, нетоксичность и обусловленное этим отсутствие вредного воздействия на окружающую среду.

7. Безграничные возможности в направленном синтезе ионных жидкостей с заданными свойствами.

Качества 3 и 4 делают ионные растворители особенно привлекательными в синтезе полимеров.

Ионные жидкости являются уникальными объектами для химических исследований, использования их в катализе, органическом синтезе и других областях, включая биохимические процессы. Количество ионных жидкостей, описанных в литературе в настоящее время очень велико (около 300). Потенциально количество ионных жидкостей практически безгранично и лимитируется лишь доступностью подходящих органических молекул (катионные частицы) и неорганических, органических и

металлокомплексных анионов. По различным оценкам количество возможных комбинаций катионов и анионов в таких ионных жидкостях может достигать 1018. На рисунке 1 представлены некоторые наиболее изученные ионные жидкости, описанные в литературе.

Методы приготовления достаточно просты и могут быть легко масштабированы. Наиболее употребительны три основных метода синтеза:

Реакция обмена между солью серебра, содержащей

необходимый анион В", и галогенопроизводным с необходимым катионом А+: Ад+В" + А+На1" ^

А+В" + АдНа1

Реакция кватернизации N

алкилгалогенпроизводного с галогенидами металла: =Ы+ - А1кНа1" + МНа1п ^ Ы+ - А1кМНа1"п+1

Реакции ионного обмена на ионообменных смолах или глинах.

Рис. 1 - Ионные жидкости

^ = Н, алкил, арил, гетарил, аллил и др., в том числе функциональные группы, х = 1-4, m=2, 3. Х- = ^4]", ^6]", ^6]", 2■, [АlkSОз]■, [СЮ4]-, [СFзSОз]-, [СНзСОО]-, [СиС12]-, [С^СЦ-, [СизС14]-, [А1С14]-, [А1БГ4]-, [АИ4]-, [АГС^]-, [А12С17]-, [А1зС1ю]-, (СFзS02)2N-, [Б^]-, -, [Ме(С0)п]- и др.)

Другим практически важным направлением синтеза ионных жидкостей является их приготовление непосредственно в реакторе. В этом случае соответствующий М-алкил галогенид и галогенид металла смешиваются в реакторе, и ионная жидкость образуется непосредственно перед запуском химического процесса или каталитической реакции. Наиболее часто ионные жидкости готовят на основе смеси хлорида алюминия с органическими хлоридами. При смешении двух твердых веществ, происходит экзотермическая

реакция, и образуются эвтектические смеси с температурами плавления вплоть до -90 °С. Это, как правило, прозрачная бесцветная или желтокоричневая жидкость (цвет обусловлен наличием примесей и локальными перегревами реакционной массы в процессе приготовления ионной жидкости).

Ионные жидкости, благодаря многообразию и особенностям своих свойств, оказались весьма привлекательными для катализа и органического синтеза. Что касается «экологичности» ионных жидкостей, многое должно быть и будет переоценено в последующих исследованиях, хотя, в целом, уже то, что они рециклизуемы, негорючи и имеют низкое давление насыщенных паров, делает их полноправными участниками «зеленой» химии, даже без учета тех выигрышей в производительности и селективности, примеры которых были даны в обзоре. Очевидно, из-за их высокой стоимости ионные жидкости вряд ли найдут широкое применение в многотоннажных процессах, если только не будут найдены дополнительные преимущества

гетерогенизированных систем. В то же время, малотоннажная химия, в первую очередь металлокомплексный катализ, может оказаться благодатной областью их использования, также как и электрохимия в целом и электрокатализ в частности.

Литература

1. А.Ф. Ягфарова, А.Р. Габдрахманова, Л.Р. Минибаева, И.Н. Мусин, Вестник Казан. технол. ун-та, 15, 13, 192-196(2012)

2. А.Р. Габдрахманова, А.Ф. Ягфарова, Л.Р. Минибаева,

А.В. Клинов, Вестник Казан. технол. ун-та, 15, 13, 6366 (2012).

© Д. Г. Логинов - магистр каф. процессов и аппаратов химической технологии КНИТУ, [email protected];

В. В. Никешин - канд. техн. наук, вед. програм. каф. процессов и аппаратов химической технологии КНИТУ, [email protected].

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http :// www . allbest . ru /

Введение

1. Ионная жидкость

1.2 Свойства ионных жидкостей

1.3 Ионные жидкости в науке

2. Тонкий органический синтез

2.1 Характеристика ТОС

Заключение

Введение

Несмотря на существование широкого набора известных катализаторов, химическая технология и органический синтез постоянно нуждаются в новых, более эффективных и экологически приемлемых катализаторах, реакционных средах и растворителях. При разработке и усовершенствовании промышленных процессов основного и тонкого органического синтеза, так же как и в нефтехимии, необходимы новые подходы к решению существующих экономических и экологических проблем, связанных с большими энергетическими затратами и загрязнением окружающей среды. Современный подход к решению проблемы замены летучих органических соединений, используемых в качестве растворителей в органическом синтезе, включает применение ионных жидкостей. Использование ионных жидкостей в качестве новых реакционных сред может решить проблему эмиссии растворителей и повторного использования дорогостоящих катализаторов.

Тонкий органический синтез (ТОС) -- это огромное число химических соединений: лекарственных препаратов, красителей, химических добавок, пестицидов, ПАВ, специальных полимерных материалов, синтетических ферментов и т. д. К тому же, как правило, получение каждого продукта тонкого органического синтеза -- сложный многостадийный процесс. Именно тонкие превращения в большинстве технологических процессов, большое количество переходов в продвижении к целевому веществу характеризуют специфику этой подотрасли органической химии, а не масштабы производств.

1. Ионная жидкость

1.1 Характеристика ионных жидкостей

Термин «ионные жидкости» означает вещества, которые являются жидкостями при температуре ниже 100°С и состоят из органических катионов, например, 1,3-диалкилимидазолия, N-алкилпиридиния, тетралкиламмония, тетраалкилфосфония, триалкилсульфония и разнообразных анионов: Cl-, [ВF4]-, [РF6]-, [ЅbF6]-, СF3ЅО3-, [(СF3ЅО2)2N]-, ROSO3-, RЅО3-, АrЅО3-, СF3СО2-, СН3СО2-, NО3-, [А12С17]-.

Природа аниона оказывает большое влияние на свойства ионных жидкостей - температуру плавления, термическую и электрохимическую стабильность и вязкость. Полярность, а также гидрофильность или гидрофобность ионных жидкостей можно оптимизировать путем соответствующего выбора пары катион/анион, и каждый новый анион и катион дает дополнительные возможности для варьирования свойств ионных жидкостей.

1.2 Свойства ионных жидкостей

Повышенное внимание к ионным жидкостям обусловлено наличием у них следующих специфических свойств:

1. Широкий интервал жидкого состояния (> 300 °С) и низкие температуры плавления (Тпл < 100 °С).

2. Высокая удельная электропроводность.

3. Хорошая растворяющая способность по отношению к разнообразным неорганическим, металлоорганическим и органическим соединениям и полимерам природного и синтетического происхождения.

4. Каталитическая активность, обуславливающая повышение селективности органических реакций и выхода целевого продукта.

5. Нелетучесть, возможность многократного использования.

6. Негорючесть, невзрывоопасность, нетоксичность и обусловленное этим отсутствие вредного воздействия на окружающую среду.

7. Безграничные возможности в направленном синтезе ионных жидкостей с заданными свойствами.

Качества 3 и 4 делают ионные растворители особенно привлекательными в синтезе полимеров.

1.3 Ионные жидкости в науке

Ионные жидкости являются уникальными объектами для химических исследований, использования их в катализе, органическом синтезе и других областях, включая биохимические процессы. Количество ионных жидкостей, описанных в литературе в настоящее время очень велико (около 300). Потенциально количество ионных жидкостей практически безгранично и лимитируется лишь доступностью подходящих органических молекул (катионные частицы) и неорганических, органических и металлокомплексных анионов. По различным оценкам количество возможных комбинаций катионов и анионов в таких ионных жидкостях может достигать 1018. На рисунке 1 представлены некоторые наиболее изученные ионные жидкости, описанные в литературе.

1.4 Методы получения ионных жидкостей

Методы приготовления достаточно просты и могут быть легкомасштабированы. Наиболее употребительны три основных метода синтеза:

Реакция обмена между солью серебра, содержащей необходимый анион В- , и галогенопроизводным с необходимым катионом

А+: Аg+В- + А+Наl- > А+В- + АgНаl (1)

Реакция кватернизации N- алкилгалогенпроизводного с галогенидами металла:

N+ - АlkНаl- + MНаln > N+ - АlkМНа1- n+1 (2)

Реакции ионного обмена на ионообменных смолах или глинах.

Рис. 1 - Ионные жидкости

(Ri = Н, алкил, арил, гетарил, аллил и др., в том числе функциональные группы, х = 1-4, m=2, 3. Х- = [ВF4]-, [РF6]-, -, -, -, 2-, [АlkЅО3]-, [СlO4]-, [СF3SО3]-, [СН3СОO]-, [СuСl2]-, [Сu2Сl3]-, [Сu3Сl4]-, [А1С14]-, [АlBr4]-, [АlI4]-, [АlСl3Еt]-, [Аl2С17]-, [А13Сl10]-, (СF3S02)2N-, -, -, [Мe(СO)n]- и др.)

Другим практически важным направлением синтеза ионных жидкостей является их приготовление непосредственно в реакторе. В этом случае соответствующий N-алкил галогенид и галогенид металла смешиваются в реакторе, и ионная жидкость образуется непосредственно перед запуском химического процесса или каталитической реакции. Наиболее часто ионные жидкости готовят на основе смеси хлорида алюминия с органическими хлоридами. При смешении двух твердых веществ, происходит экзотермическая реакция, и образуются эвтектические смеси с температурами плавления вплоть до -90 °С. Это, как правило, прозрачная бесцветная или желто- коричневая жидкость (цвет обусловлен наличием примесей и локальными перегревами реакционной массы в процессе приготовления ионной жидкости). Ионные жидкости, благодаря многообразию и особенностям своих свойств, оказались весьма привлекательными для катализа и органического синтеза.

Что касается «экологичности» ионных жидкостей, многое должно быть и будет переоценено в последующих исследованиях, хотя, в целом, уже то, что они рециклизуемы, негорючи и имеют низкое давление насыщенных паров, делает их полноправными участниками «зеленой» химии, даже без учета тех выигрышей в производительности и селективности, примеры которых были даны в обзоре. Очевидно, из-за их высокой стоимости ионные жидкости вряд ли найдут широкое применение в многотоннажных процессах, если только не будут найдены дополнительные преимущества гетерогенизированных систем. В то же время, малотоннажная химия, в первую очередь металлокомплексный катализ, может оказаться благодатной областью их использования, также как и электрохимия в целом и электрокатализ в частности.

2. Тонкий органический синтез

2.1 Характеристика ТОС

Тонкий органический синтез (ТОС) - это промышленное малотоннажное производство органических веществ сложного строения.

Основные источники сырья - продукты основного органического синтеза. Для тонкого органического синтеза характерны многостадийность, трудности при масштабном переходе и сравнительно высокие удельные энерго- и трудозатраты, обусловленные зачастую низким съемом продукции с единицы объема реакторов, значительным количеством отходов, сложностью решения экологических вопросов и др. Эффективность процессов тонкого органического синтеза повышают главным образом с помощью использования гибких блочно-модульных схем, автоматических систем управления, привлечения методов биотехнологии (для получения полупродуктов и преобразования отходов), лазерной химии и др.

Основные продукты тонкого органического синтеза - красители, лекарственные препараты, пестициды, текстильно-вспомогательные и душистые вещества, химикаты-добавки для полимерных материалов, химикаты для кинофотоматериалов, химические реактивы и др.

2.2 История прогресса в органическом синтезе

Прогресс в промышленности органического синтеза в значительной степени зависит от разработки новых реакций. Часто принципиально новая реакция создает новую эпоху в органической химии. Например, в 1928 г. была открыта реакция диенового синтеза (О. Дильс и К. Альдер), состоящая в присоединении веществ, содержащих двойную или тройную связь (диенофилов) в 1,4-положении к сопряженным диеновым системам с образованием шестичленных циклов:

Рисунок 1 - Схема рекции диенового синтеза

Эта реакция стала основой процессов получения многих новых синтетических веществ от самых различных циклических соединений до сложных полициклических систем, например стероидных и далее гетероциклических систем.

Реакция Виттига стала основой нового метода синтеза олефинов, с помощью которого получено большое число сложных аналогов природных соединений, рисунок 2.

Рисунок 2 - Схема реакции Виттига

2.3 Метод иммобилизации ферментов

Развитию синтеза олефинов способствовала разработка реагентов, иммобилизованных на полимерных носителях. При этом второй реагент находится в растворе. Реакция протекает таким образом, что продукт остается на полимере и легко отделяется фильтрованием и промывкой от избытка второго реагента и побочных продуктов. Затем конечный продукт отщепляют от полимерной матрицы и подвергают очистке. Это позволяет проводить многостадийные и трудоемкие синтезы без сложной очистки на промежуточных стадиях. Особенно успешно этот метод применяется для синтеза пептидов и белков.

Весьма эффективен метод иммобилизации ферментов на нерастворимом носителе. Фермент выделяют из природного источника, очищают, фиксируют на неорганическом или полимерном носителе с помощью привязки ковалентной связью или путем адсорбции. Раствор вещества пропускают через колонку, заполненную таким иммобилизованным ферментом. На выходе из колонки продукт отделяют обычными методами. Таким образом можно осуществлять многостадийные процессы, пропуская раствор последовательно через несколько колонок с разными ферментами.

2.4 Метод межфазного катализатора

Новым этапом в развитии тонкого органического синтеза явилось использование так называемого межфазного катализа, когда в реакционную смесь добавляют специальные вещества -- катализаторы межфазного переноса (аммониевые, фосфониевые соли, краун-эфиры). Эти вещества способствуют переносу, например, анионов из водной или твердой фазы в органическую фазу, где они вступают в реакцию.

Число реакций, для которых межфазные катализаторы эффективны, весьма велико и включает практически все реакции с участием карбанионов (реакции Кляйзена, Михаэля, Виттига, Хорнера и другие, С-алкилирования, присоединения и др.). Перспективно применение межфазного катализа в реакциях окисления, когда органическое вещество нерастворимо в воде, а окислитель -- в органическом растворителе. Например, нерастворимый в бензоле манганат калия при добавлении небольших количеств краун-эфира дает так называемый малиновый бензол, который содержит ион MnO4-, служащий сильным окислителем. В современных методах органического синтеза ныне успешно пользуется планирование сложных многостадийных процессов. Как правило, переход от исходных к целевым продуктам сложного состава и структуры может быть осуществлен разными путями, среди которых есть более или менее рациональные. По мере усложнения синтезируемых соединений формируются определенные методические принципы выбора наиболее эффективной схемы.

Заключение

ионный жидкость органический синтез

На данный момент изучение ионных жидкостей и их свойсв является весьма перспективной и очень важной отраслью в мировой науке. Особенно занимательной является область взаимодействия ионных жидкостей с различными веществами, с дальнейшим получением новых веществ.

Ионные жидкости играют очень большую роль в упрощении технологий тонкого органического синтеза. Так как ТОС является трудоемким процессом, научное сообщество заинтересованно в изобретении новых катализаторов, таковыми могут стать ионные жидкости.

Список использованных источников

1. Ягфарова, А.Ф., Методическое пособие по ионным жидкостям / А.Р. Габдрахманова, Л.Р. Минибаева, И.Н. Мусин. - Вестник: КТУ, 2012, 192-196.

2. Габдрахманова, А.Р., Методическое пособие по ионным жидкостям / А.Ф. Ягфарова, Л.Р. Минибаева, A.В. Клинов. - Вестник: КТУ, 2012, 63-66.

3. Быков, Г. В. История органической химии. - М., 1976. 360 с

4. Реихсфельд, В.О., Еркова Л.Н., Оборудование производств основного органического синтеза и синтетических каучуков / Реихсфельд В.О, Еркова Л.Н. - М. - Спт., 1965.

Размещено на Allbest.ru

...

Подобные документы

    Получение органических соединений, материалов и изделий посредством органического синтеза. Основные направления и перспективы развития органического синтеза. Группы исходных веществ для последующего органического синтеза. Методика органического синтеза.

    реферат , добавлен 15.05.2011

    Технология получения и области применения биогаза как нового источника получения энергии. Методы переработки отходов животноводства и птицеводства для получения биотоплива. Правила техники безопасности при работе в микробиологической лаборатории.

    курсовая работа , добавлен 06.10.2012

    Сущность "псевдоравновесного синтеза". Синтез веществ конгруэнтно растворимых с учетом диаграммы состояния тройных систем. Метод осаждения из газовой фазы. Окислительно-восстановительные реакции в растворах. Физико-химические методы очистки веществ.

    контрольная работа , добавлен 07.01.2014

    Методы проектирования систем применения смазочно-охлаждающих жидкостей на операциях шлифования. Математическая модель процесса очистки СОЖ от механических примесей в фильтрах и баках-отстойниках. Исследование движения жидкости и механических примесей.

    дипломная работа , добавлен 23.01.2013

    Тенденции развития органического синтеза. Синтез-газ как альтернатива нефти. Получение этанола прямой каталитической гидратацией этилена. Замена двухстадийного процесса синтеза ацетальдегида из этилена через этанол одностадийным окислительным процессом.

    курсовая работа , добавлен 27.02.2015

    Требования, предъявляемые к рабочим жидкостям гидравлических систем. Классификация и обозначения гидравлических масел в отечественной практике. Связь молекулярной структуры жидкостей с их физическими свойствами. Очистка и регенерация рабочих жидкостей.

    контрольная работа , добавлен 27.12.2016

    Характеристика принципа работы сепаратора, его предназначение. Использование тарельчатых сепараторов для улучшения эффективности управления процессом разделения различных жидкостей и твердых веществ. Специфика оборудования, используемого для сепарации.

    статья , добавлен 22.02.2018

    Методы получения наноматериалов. Синтез наночастиц в аморфных и упорядоченных матрицах. Получение наночастиц в нульмерных и одномерных нанореакторах. Цеолиты структурного типа. Мезопористые алюмосиликаты, молекулярные сита. Слоистые двойные гидроксиды.

    курсовая работа , добавлен 01.12.2014

    Структурный анализ и синтез плоского рычажного механизма, его кинематический и силовой расчет. Построение схем и вычисление параметров простого и сложного зубчатых механизмов. Звенья кулачкового механизма, его динамический анализ. Синтез профиля кулачка.

    курсовая работа , добавлен 29.12.2013

    Применение бентонитовых глин при производстве железорудных окатышей, входящие в их состав минералы. Исследование влияния органических добавок на свойства сырых окатышей. Физические и химические характеристики связующих добавок, их реологические свойства.

Смешиваемость ионных жидкостей с различными растворителями представлена в таблице 1.4.

Таблица 1.4. Смешиваемость ИЖ с различными растворителями . № Растворитель е I

А1С13 - основание - AICI3 - кислота 1 Вода 80,1 Не смешивается Реагирует Реагирует 2 Пропиленкарбонат 64,4 Смешивается Смешивается Смешивается 3 Метанол 33,0 Смешивается Реагирует Реагирует 4 Ацетонитрил 26,6 Смешивается Смешивается Смешивается 5 Ацетон 20,7 Смешивается Смешивается Реагирует 6 Метиленхлорид 8,93 Смешивается Смешивается Смешивается 7 ТГФ 7,58 Смешивается Смешивается Реагирует 8 Трихлорэтилен 3,39 Не смешивается Не

смешивается Не

смешивается 9 Сероуглерод 2,64 Не смешивается Не

смешивается Не

смешивается 10 Толуол 2,38 Не смешивается Смешивается Реагирует 11 Гексан 1,90 Не смешивается Не

смешивается Не

смешивается

Ионная жидкость {+PFОбычно процессы в ионных жидкостях сравнивают с таковыми в типичных органических растворителях . С этой точки зрения, по отношению к соединениям, которые проявляют слабые основные свойства, основная ИЖ будет вести подобно ДМФА. С другой стороны, по кислотности ИЖ кислого типа ведут себя подобно трифторуксусной кислоте. При комнатной температуре ионные жидкости являются прекрасными растворителями и, в то же время, способны играть роль катализаторов для ряда реакций, таких как реакции Фриделя-Крафтса, Дильса-Альдера, реакций изомеризации и восстановления .

[ЕМ1ш]С1-А1С1з и другие галогеналюминатные ионные жидкости обладают кислотностью Льюиса, которая может быть проконтролирована изменением молярного соотношения двух компонентов А1С13ЛшС1. Все это делает ионные жидкости интересными объектами в качестве неводных реакционных сред . Льюисовская кислотность этих систем определяется активностью хлорида. Равновесие в хлоралюминатной жидкости при комнатной температуре может быть описано двумя уравнениями:

AICI4" + AICI3 AI2C17*

Первое описывает процесс в основных расплавах, при молярном соотношении А1С13ЛтС1 меньше единицы, а второе - в кислых, где соотношение больше единицы. Это значит, что анионов С Г, AICI4", AI2CI7" образуется больше, и их относительные количества определяются равновесием: 2А1СЦ" *

АЬСЬ" + СГ Гептахлоралюминат-ион - сильная кислота Льюиса, благодаря иону хлора в сопряженном основании Льюиса. Нейтральная ионная жидкость - это такая жидкость, где мольное соотношение А1С1зЛтС1 равно единице и присутствует только ион AICI4*. В настоящее время стало возможным нейтрализовывать буферные кислые ИЖ твердыми алкилхлоридами металлов .

Полная растворимость ионных жидкостей в растворителях делает их удобными для спектрофотометрических измерений, особенно в видимой и УФ-областях. Они могут использоваться вместе с органическими растворителями, при этом в результате сольватации происходит рассредоточение ионов ИЖ и, как следствие, изменение некоторых физико- химических свойств: уменьшение вязкости и увеличение проводимости раствора. При сравнении ИК - спектров кислотных и основных ионных жидкостей обнаруживается незначительное искажение ароматического кольца, которое менее напряжено в отличие от соли, имеющей меньший катион. Это означает, что водородная связь между атомом водорода на втором углеродном атоме кольца и ионом хлорида или очень слабая, или вообще отсутствует. В ИЖ основного типа напряжение водородной связи все еще значительно. Одним из преимуществ ИЖ является их термическая стабильность в широком диапазоне температур, которая дает возможность успешно контролировать реакции, протекающие в этих жидкостях. Так +PF6" начинает разлагаться при температуре ~ 620 К, а с заметной скоростью при 670 К. Разложение ИЖ протекает по одному механизму как на воздухе, так и в среде азота. Обнаружено, что в случае нагревания на воздухе окисления ИЖ не происходит.

Ионные жидкости удобны для использования и недороги для производства. Они являются хорошими растворителями, а возможность создания на их основе каталитических систем делает их предпочтительными для проведения каталитических реакций. Подбором ионных жидкостей можно добиться выделения продуктов реакции в другую фазу .

Поведение ИЖ при воздействии ионизирующего излучения практически не изучено. Предварительная оценка радиационной стабильности одной из наиболее известной ИЖ на основе 1,3 диалкилимидазольного катиона (+PF6") показывает, что она сравнительно устойчива к действию ионизирующего излучения (подобно бензолу) и более устойчива, чем система на основе смеси трибутилфосфата и керосина. Показано, что в исследованных условиях ионные жидкости при действии ионизирующего излучения в обнаруживаемых количествах не распадаются на составляющие их органические компоненты .

Еще по теме 1.5.2. Свойства ионных жидкостей:

  1. 3.5. Изучение радиационно-химического процесса полимеризации элементного фосфора в органических растворителях в присутствии ионных жидкостей 3.5.1. Диэлектрические свойства исходных растворов

НЕФТЕХИМИЯ, 2007, том 47, № 5, с. 339-348

УДК 541.48-143:542.97

© 2007 г. Ф. А. Насиров, Ф. М. Новрузова, А. М. Асланбейли, А. Г. Азизов

Институт нефтехимических процессов НАН Азербайджана, Баку E-mail: [email protected] Поступила в редакцию 06.02.2007 г.

Обобщены данные по процессам каталитического превращения олефинов и диенов с использованием в качестве растворителей ионных жидкостей (ИЖ). Обсуждается роль этих соединений в решении экологических проблем с точки зрения зеленой химии. Рассмотрены некоторые промышленные процессы с участием ионных жидкостей.

Общее определение "зеленой химии" - это проектирование и разработка химических продуктов и процессов, которые снижают или устраняют применение и производство опасных веществ . Любое вещество и способ его получения посредством химических превращений можно рассматривать в связи с их возможным воздействием на окружающую среду . Задача "зеленой химии" сводится к разработке химических процессов, с одной стороны, приемлемых экономически, с другой - минимальным образом загрязняющих природу. При разработке таких "чистых" промышленных процессов следует руководствоваться 12-ю принципами "зеленой химии", приведенными в работах .

Применение благоприятных для окружающей среды растворителей или проведение процессов вообще без растворителей представляет одну из самых важных областей "зеленой химии". Типичные органические растворители часто являются достаточно легко летучими соединениями, поэтому помимо опасного загрязнения воздуха они, как правило, легко воспламеняемы, токсичны или канцерогенны. Использование вместо них ИЖ представляет большой научный и практический интерес при создании новых процессов "зеленой химии".

Достижения в применении ИЖ в катализе подробно описаны в многочисленных книгах и обзорных статьях, включая работы .

Значительные успехи были достигнуты при использовании ИЖ в таких процессах каталитического превращения олефинов и диенов, как диме-ризация, олигомеризация, алкилирование и мета-тезис. Потенциал ИЖ, как новых сред для упомянутых реакций гомогенного катализа, был в полной мере оценен благодаря пионерским работам и глубоким исследованиям целой группы ученых-химиков .

ПРЕДСТАВЛЕНИЕ ОБ ИОННЫХ ЖИДКОСТЯХ

Ионные жидкости, как новый класс альтернативных растворителей, привлекают большое внимание благодаря низкому давлению насыщенных паров, отсутствию токсичности и возможности взаимодействия с металлоорганическими соединениями, что открывает широкие перспективы их использования в катализе . В принципе, огромное разнообразие ИЖ достигается при варьировании сочетания катиона и аниона, которые, в свою очередь, могут быть выбраны для каждой конкретной реакции . В то же время, вопросы токсичности и себестоимости этого нового класса растворителей должны быть оценены в каждом отдельном случае .

ИЖ, состоящие из большого по размеру азотсодержащего органического катиона и значительно меньшего неорганического аниона, представляют собой соединения с Гпл обычно ниже 100-150°С.

В литературе упоминалось о множестве катионно-анионных ассоциаций, способных образовывать ИЖ комнатной температуры (ИЖКТ). Это обстоятельство отличает их от классических расплавленных солей (напр., NaCl с Гпл = 801°С, Na3AlF3 с Гпл = 1010°С, хлорида тет-рабутилфосфония с Гпл = 80°С, смеси LiCl: KCl = = 6: 4 с Гпл = 352°С и т.д.). ИЖКТ - жидкости гл. обр. с большими асимметричными катионами в молекуле, предотвращающими плотную упаковку анионов. ИЖ содержат аммоний-, сульфоний-, фосфоний-, литий-, имидазолий-, пиридиний-, пи-колиний-, пирролидиний-, тиазолий-, триазолий-, оксазолий- и пиразолий-катионы с различными заместителями .

Особый интерес представляют жидкие соли на основе ^^диалкилимидазолиевого катиона, от-

личающиеся широким спектром физико-химических свойств, которые обычно получают анионооб-меном из галогенидов имидазола.

Анионы ИЖ подразделяют на два типа. Первый составляют полиядерные анионы (напр.,

А12 С1-, А13 С1 10, Аи2С17, Бе2С17 и 8Ь2Б-!), образующиеся при взаимодействии соответствующей кислоты Льюиса с одноядерным анионом (напр.,

А1С1-) и особенно чувствительные к воздуху и воде. Второй тип - одноядерные анионы, входящие в состав нейтральных стехиометрических ИЖ,

напр., ВБ4, РБ6, 2пС133, СиС12, 8пС1-,

N№802)-, N(№802)-, С(СБз802)3, СБзС02,

СБ3803, СН380- и т.д.

При изменении алкильных групп исходного соединения (имидазольного, пиридиниевого, фос-фониевого и т.д.), а также типа ассоциированных анионов теоретически возможен синтез огромного разнообразия ИЖ, обладающих различными физико-химическими свойствами. Авторы работы предполагают существование до одного триллиона (1018) возможных сочетаний катион/анион в ИЖ.

Наиболее часто используются хлоралюминат-ные, тетрафторборатные или гексафторфосфат-ные ИЖ на основе ^алкилпиридинума или 1,3-ди-алкилимидазолиума. Органохлоралюминатные ИЖ, полученные из хлоридов ^алкилпиридиниума или 1,3-диалкилимидазолиума и треххлористого алюминия, имеют широкий предел жидкой фазы вплоть до 88°С.

Физические и химические свойства ИЖ (плотность, электропроводность, вязкость, кислотность по Льюису, гидрофобность, способность к образованию водородной связи) можно регулировать изменением типа и соотношения катионных и анионных составляющих. При этом возникает возможность создания ИЖ с желаемыми свойствами, пригодными для применения в катализе.

ИЖ называют "зелеными растворителями" -вследствие незначительного давления пара, они не летучи и поэтому не воспламеняются ; кроме того, не смешиваются с рядом обычных органических растворителей, что обеспечивает реальную альтернативу для создания двухфазных систем. Это свойство позволяет легче отделять продукты от реакционной смеси, а также регенерировать катализатор и возвращать его в систему вместе с ИЖ. Двухфазный катализ жидкость-жидкость способствует "гетерогенизации" гомогенного катализатора в одной фазе (обычно полярной, в этом случае в ИЖ), а органических продуктов - в другой. Продукт отделяют от раствора катализатора простой декантацией, а катализатор используют многократно без снижения эф-

фективности, избирательности и активности процесса. Катализатор ионного типа может легко удерживаться в фазе ИЖ без необходимости синтеза лигандов специального назначения. В случае, когда катализатор не заряжен, переход (вымывание) дорогостоящего переходного металла в органическую фазу можно ограничить с помощью использования функциональных лигандов, специально внедряемых в структуру ИЖ. Термодинамические и кинетические характеристики химических реакций, проводимых в ИЖ, отличаются от таковых в традиционных летучих органических растворителях, что также представляет огромный интерес.

В литературе сообщается о многих химических реакциях, в которых ИЖ использованы в качестве среды. К числу таких реакций относятся крекинг, гидрирование, изомеризация, димериза-ция, олигомеризация и др. Известно, что ИЖ, применяемые в ряде каталитических систем, проявляют большую активность, избирательность и стабильность, чем в случае традиционных растворителей. Зачастую они обеспечивают лучшие выходы, высокоселективное распределение продуктов реакции, а в некоторых случаях и более быструю кинетику процесса. Реакции в ИЖ протекают также при более низких давлениях и температурах, нежели обычные реакции, приводя, таким образом, к значительному снижению энергетических и капитальных затрат.

ИОННЫЕ ЖИДКОСТИ В КАТАЛИТИЧЕСКИХ ПРОЦЕССАХ ПРЕВРАЩЕНИЯ ОЛЕФИНОВ И ДИЕНОВ

Каталитические процессы димеризации, оли-гомеризации, алкилирования и метатезиса оле-финов и диенов в ИЖ открывают новые возможности для их превращения в более ценные олефи-ны и другие продукты. Роль растворителя в этих гомогенных каталитических процессах заключается в растворении и стабилизации молекул мономеров, лигандов и катализаторов без взаимодействия с ними и без конкуренции с мономерами за вакантный координационный центр.

Как растворители ИЖ уникальны своей слабой координационной способностью, которая по отношению к каталитическому комплексу зависит от природы аниона. ИЖ, отличающиеся низкой нуклеофильностью, не конкурируют с органической молекулой за координацию в электрофиль-ном центре металла. В некоторых случаях их роль заключается просто в обеспечении полярной, слабо координирующей среды для металлоорганиче-ского комплексного катализатора (в качестве "безвредного" растворителя) или как сокатализа-тора (напр., в случае хлороалюминатных или хло-ростаннатных ИЖ), поэтому они могут приме-

няться в качестве непосредственного растворителя, сорастворителя и катализатора .

Известно, что большинство ИЖ образуют двухфазные смеси с многими олефинами, и эти системы обладают всеми преимуществами как гомогенного, так и гетерогенного катализа (напр., мягкие условия проведения процесса, высокое отношение эффективность/избирательность, характерное для гомогенных катализаторов, легкое разделение продуктов реакции, оптимальное расходование гетерогенных катализаторов).

В настоящее время наиболее изученной реакцией в ИЖ является катализируемая соединениями никеля димеризация низших олефинов с использованием хлоралюминатного типа растворителя.

Во Французском институте нефти (ФИН) разработан каталитический процесс димеризации пропилена в среде хлоралюминатной ИЖ на основе 1-бу-

тил-3-метилимидазолиум хлорида (bmimCl) - т.н. никель-процесс . Катализатор состоит из L2NiCl2 (L = Ph3P или пиридин) в сочетании с EtAlCl2 (bmimCI/AlQ3/EtAlQ2 = 1/1.2/0.25) и активным кати-

онным комплексом никеля (II) +AlCl-, образованным in situ при алкилировании L2NiCl2 с EtAlCl2 в кислотных алкилхлоралюминатных ИЖ. Поскольку последние промотируют диссоциацию ионных металлокомплексов, предполагалось, что они оказывают благотворное влияние на эту реакцию. При 5°С и атмосферном давлении производительность процесса достигает до ~250 кг димера/г Ni, что намного больше тако

Для дальнейшего прочтения статьи необходимо приобрести полный текст ЕЛИСЕЕВ О.Л., ЛАПИДУС А.Л. - 2010 г.

  • НЕКОТОРЫЕ ЗАКОНОМЕРНОСТИ И МЕХАНИЗМ РЕГУЛИРОВАНИЯ МОЛЕКУЛЯРНО-МАССОВОГО РАСПРЕДЕЛЕНИЯ ПРОДУКТОВ ОЛИГОМЕРИЗАЦИИ ЭТИЛЕНА В ПРИСУТСТВИИ ZR-СОДЕРЖАЩИХ МЕТАЛЛОКОМПЛЕКСНЫХ СИСТЕМ (ОБЗОР)

    АЗИЗОВ А.Г., АЛИЕВА Р.В., ВЕЛИЕВА Ф.М., ГУЛИЕВ Б.В., ИБРАГИМОВА М.Д., ХАНМЕТОВ А.А. - 2008 г.