Самые необычные спутники солнечной системы. Рекорды солнечной системы Интересные факты о спутниках планет

Спутник Юпитера Ганимед — крупнейший спутник не только у этой планеты, но и во всей Солнечной системы. Он настолько велик, что по размерам превышает планету , а также единственный из планетарных спутников может похвастаться наличием магнитосферы и, пускай слабенькой, но всё же кислородной атмосферой!

Ганимед — самый большой спутник Юпитера

Как был открыт спутник Ганимед

«Официально» Ганимед был открыл Галилео Галилеем 7 января 1610 года, причем открыт чисто случайно — наблюдая , астроном обратил внимание на четыре маленькие «звезды» рядом с ним, и, заметив их сдвиг на следующую ночь, сделал верное предположение, что перед ним никакие не звезды, а луны Юпитера. Галилей не стал заморачиваться с названиями и окрестил все вновь открытые небесные тела (Каллисто, Европу, Ио, Ганимед) по-простому: Юпитер 1, 2, 3 и 4.

Ганимед в этом списке фигурировал как «Юпитер 3» .

Однако тут на сцену вышел немецкий астроном Симон Марий , утверждавший, что спутники Юпитера он наблюдал ещё в 1609 году, и заранее придумал дать им куда более звучные и интересные имена. Так и появилось название Ганимед — в греческих мифах это имя носил сын троянского царя Троса , поднятый Зевсом (Юпитером) на небо и включенным в свою свиту.

Впрочем, в широкое употребление это название вошло только в 20-м веке.

Размеры, ландшафт и состав поверхности Ганимеда

Ганимед — крупнейшая луна в Солнечной системе, имеющая диаметр 5268 километров и рекордную для спутников планет массу 1.4619 х 1023 (2 наших Луны). Судя по характеристикам плотности вещества составляющего его массу, Ганимед состоит из примерно равных долей скальных пород и водяного льда. На полюсах есть ледяные шапки из водяного льда.

Оборот вокруг Юпитера Ганимед совершает за 7 дней и 3 часа, а среднее расстояние от Юпитера для этого спутника составляет 1 070 400 километров.

Внутри спутник обладает жидким железным ядром, силикатной мантией и оболочкой из льда. Ядро имеет радиус 500 км, а его температура составляет 1500-1700 К с давлением в 10 Па.

Мантия представлена хондритами и железом. Внешняя ледяная корка Ганимеда имеет толщину до 800 км, с большой вероятностью можно утверждать, что под поверхностью этого спутника Юпитера расположен жидкий океан.

На поверхности спутника различаются две ярко выраженные разновидности рельефа. Первая это древние участки покрытые кратерами (темные) занимающие 1/3 поверхности, вторая — молодые территории с хребтами и «оврагами» (светлые).

Молодой ландшафт сформирован тектоникой, но, разумеется другого характера, нежели на Земле. Причиной образования горных хребтов и пропастей на Ганимеде являются криовулканизм (извержение ледяных вулканов) и приливный нагрев.

Обилие кратеров на «древних» плоских участках планеты относят к периоду 3.5-4 млрд. лет назад, когда Ганимед подвергся мощной астероидной атаке.

Ландшафт Ганимеда довольно причудлив, тут и там его пересекают широкие полосы, будто бы по ним прошел гигантский каток. На самом деле — это области сжатия-растяжения поверхности

Атмосфера и магнитосфера Ганимеда

Как уже отмечалось, именно у Ганимеда есть то, чем могут похвастаться далеко не все планеты Солнечной системы — сильно разряженная, но все-таки кислородная атмосфера. Кислород в ней появляется благодаря присутствию на поверхности спутника залежей водяного льда, под действием ультрафиолетового излучения разлагающегося на водород и кислород. Более того, так как в составе атмосферы Ганимеда обнаружен и озон, скорее всего можно говорить о присутствии у спутника также и ионосферы.

Наличие атмосферы (вернее присутствие в ней атомарного водорода) приводит к эффекту аэрографа – слабому световому излучению появляющемуся у полюсов планеты.

Тем не менее, хотя словосочетание «кислородная атмосфера» звучит очень красиво и наводит на мысли о колонизации и внеземном разуме, стоит помнить о том, что давление атмосферы Ганимеда составляет всего 0,1 Па, то есть ничтожная часть земного.

Ещё более интересная особенность этой юпитерианской луны — магнитосфера. Да, Ганимед располагает магнитосферой, величина стабильного магнитного момента которой достигает – 1.3 х 10 3 Т · м 3 (т.е. в 3 раза выше чем у Меркурия). Сила магнитного поля достигает 719 Тесла, а диаметр магнитосферы достигает 13156 км. Замкнутые полевые линии находятся ниже 30° широты, где захватываются заряженные частички и формируют радиационный пояс. Среди ионов наиболее распространенными выступает одиночный ионизированный кислород.

При соприкосновении магнитосферы Ганимеда и плазмой Юпитера, наблюдается ситуация очень похожая на контакт солнечного ветра и земной магнитосферы. Тем не менее, следует признать — магнитное поле спутника слишком слабое и не в состоянии удержать потоки радиации испускаемые Юпитером, так что окажись мы на поверхности Ганимеда, не смотря на наличие магнитосферы, нам бы не поздоровилось.

Строение самой большой луны Юпитера — Ганимеда

Исследование Ганимеда в наше время и перспективы колонизации спутника Юпитера

В новейшее время к Юпитеру отправлялось несколько исследовательских зондов, поэтому у нас есть достаточно подробные данные не только о планете-гиганте, но и о её спутниках.

Космические аппараты «Пионер-10» (1973 г.) и «Пионер-11» (1974 г.) дали нам представления о физических характеристиках лун Юпитера, «Вояджер 1» и «Вояджер 2» (1979 г.) снабдили фотографиями и «атмосферными пробами», но эти аппараты, скорее задавали вопросы…

Ответы начал давать зонд «Галилео», изучавший Ганимед в период с 1996-2000 г. Именно ему удалось обнаружить магнитное поле, внутренний океан и предоставить множество спектральных снимков. А в 2007 году мы получили не только спектры, но и топографическую карту этого спутника, сделанную зондом «Новые горизонты».

На данный момент всё ещё осталась масса нерешенные вопросов относительно спутников Юпитера, их пригодности для колонизации и потенциала наличия жизни. Однако на новые экспедиции пока нет денег ни у НАСА, ни у Роскосмоса, ни у Евросоюза.

Впрочем, возможно в ближайшем будущем все изменится.

Слова про колонизацию Ганимеда — не просто слова. Дело в том, что этот спутник, при всех недостатках (удаленность, радиация и т.п.) имеет немало плюсов как «промежуточная база» на пути в «дальний космос». Запасы воды, кое-какой магнитный щит, гравитация позволяющая тратить меньше энергии на взлет — все это делает Ганимед не самым плохим кандидатом, во всяком случае стартовые условия этот спутник Юпитера предлагает лучшие, чем тот же или наша .

Ганимед

Начнем с самого большого спутника солнечной системы под названием Ганимед. Он сопровождает Юпитер и имеет размеры, превышающие размеры Плутона и Меркурия. Поэтому, если бы Ганимед имел орбиту, пролегающую вокруг Солнца, он бы мог стать полноценной планетой.

Несмотря на огромный диаметр в пять тысяч километров, спутник имеет плотность всего в два раза большую, чем плотность воды. Это говорит о том, что на 50% это небесное тело состоит из воды. Это наталкивает на размышления по поводу обитаемости спутника. На Ганимеде находятся огромные кратеры изо льда. Это места, где вода из внутренних озер вырывается наружу и моментально застывает, образуя так называемые «вулканы».

Роберт Паппаларо долгое время исследовал спутник и сделал заключение, что в районе экватора поверхность Ганимеда похожа на пористую губку, а кора покрыта «вулканами». Образованные внутренние бассейны должны быть достаточно теплыми, и это дает возможность предполагать, что в них может содержаться какая-либо форма жизни.

Кроме этого, есть еще некоторые факты, которые могут свидетельствовать о том, что Ганимед может быть обитаем. Так, на спутнике происходит активная вулканическая деятельность, что означает развитие планеты. Ганимед обогревается излучениями со стороны Юпитера и имеет огромное раскаленное ядро.

Ганимед имеет магнитное поле, благодаря которому создается красивейшая аура, которую не имеет ни один спутник Солнечной системы. К слову, наличие такого магнитного поля также свидетельствует в пользу обитаемости небесного тела.

Возможно, когда-то до Ганимеда доберется человек, и тогда станет известно намного больше фактов об этом загадочном спутнике, который так похож на планету.

Миранда

Спутник Урана Миранда удостоился звания самого уродливого спутника. Он был открыт 16 февраля 1948 года и стал самым маленьким спутником Урана из пяти. Своим названием он обязан одному из персонажей пьесы «Буря» У. Шекспира. К слову, все предыдущие спутники также были названы в честь персонажей произведений этого автора.

По причине огромной удаленности от Земли, всего один раз, в 1986 году удалось получить снимок Миранды. Исследования показали, что спутник имеет все геологические формы, которые были до этого времени представлены на твердых планетах Солнечной системы.

Две теории пытаются объяснить данный факт. Одна из них гласит о том, что возможно, спутник столкнулся с огромным небесным телом, что буквально разрушило его. Однако под воздействием гравитации спутник через какое-то время «собрался» вновь. Это и послужило причиной столь странного внешнего вида.

Приверженцы второй теории утверждают, что недра Миранды неравномерно прогреваются, что приводит к тому, что на спутнике имеется такое геологическое разнообразие.

Грунт спутника имеет большие ледяные включения. Кроме того, астрономы сделали вывод, что некоторые области Миранды меняли свой облик не менее пяти раз. Территория спутника полностью покрыта мелкими кратерами. Исключение составляет область, которая получила название Шеврон.

Спутнику принадлежит одно из самых высоких образований среди всех спутников Солнечной системы — скала Вероны Рупс. Ее высота составляет 20 километров. Необычность заключается в том, что данная возвышенность смогла образоваться на спутнике, размеры которого относительно невелики — лишь 472 километра в диаметре. Данный факт может косвенно подтверждать теорию того, что спутник был вновь собран по частям после неудачного столкновения.

Каллисто

Спутник Юпитера Каллисто был открыт в 1610 году и своим названием он обязан подруге Зевса, превращенной в Медведицу. Это одно из старейших небесных тел в Солнечной системе. На его поверхности находится огромное число кратеров, их количество не сравнится ни с одним другим космическим объектом, которое можно наблюдать. Это еще раз доказывает древний возраст спутника.

Толщина льда, который покрывает Каллисто, составляет примерно 200 километров. В то же время толщина водяного слоя подо льдом составляет около 10 километров. Таким образом, спутник Каллисто на 60% состоит из воды и льда. Остальные 40% составляют спрессованные горные породы.

Главной особенностью спутника является огромное светлое пятно, которое получило название Вальхалла. Его диаметр составляет примерно 600 километров. Вокруг этого пятна почти через одинаковые промежутки поверхность напоминает «вспаханную». Ученые объясняют это результатом падения огромного количества космических тел.

Недавно была выдвинута версия о том, что в коре Каллисто, поверхность которого покрыта льдом, могут происходить процессы электролиза с образованием кислородно-водородной смеси. Данная смесь при накоплении в больших количествах может становиться взрывоопасной. Когда-то данное соединение просто взорвет спутник и тогда его осколки начнут падать на Землю. Удар такого осколка может быть приравнен к атомному взрыву, мощность которого составляет тысячу мегатонн.

Дактиль

Это самый маленький спутник в Солнечной системе. Однако заслужил известность он не поэтому. Дело в том, что Дактиль — это спутник астероида! Он был обнаружен в 1993 году, когда по направлению к Юпитеру летели два астероида, один из которых имел спутник. Данный астероид получил название Ида. До этого момента, ученые полагали, что астероиды не могут иметь спутников. Однако Дактиль доказал обратное. В настоящее время обнаружено еще несколько спутников астроидов.

На картинке слева — астероид Ида, справа — спутник Дактиль.

Тритон

Это самый большой спутник Непутна, который был открыт в 1846 году. Основной странностью данного спутника является то, что он движется в противоположную сторону от движения планеты. Кроме этого привлекает внимание и орбита Тритона, которая дает возможность развития теории того, что когда-то Тритон был самостоятельно планетой, которая была притянута гравитацией Нептуна.

Из-за нехватки солнечного тепла, Тритон покрыт льдом нескольких оттенков. В местах, где застыл азот он сине-зеленый. Там, где содержатся примеси железа он красноватый. Поверхность спутника покрыта трещинами, который по предположениям появились в результате криовулканической деятельности. Тритон имеет практически наибольшую сейсмическую активность среди всех изученных небесных объектов. Однако даже она здесь абсолютна уникальна. Вулканы Тритона извергают лед, который стелется на сотни километров.

Ученые полагают, что благодаря азотной атмосфере, Тритон может стать пригодным для жизни. Однако случится это через несколько миллиардов лет, когда Солнце станет Красным гигантом и нагреет поверхность Тритона до необходимой температуры.

Европа

Спутник Юпитера Европа был открыт 1610 году. По размерам он схож с Луной, однако его поверхность полностью покрыта льдом. Европа не имеет каких-либо гор, только небольшие возвышенности.

Европа имеет огромное гравитационное притяжение к Юпитеру, что влияет на ледяную поверхность и вызывает появление трещин. Внутри спутника вырабатывается тепло и возможно на дне бьют гейзеры. Данное тепло объясняет наличие огромного океана, покрытого льдом. Астрономы предполагают, что его глубина может достигать ста километров.

Кроме этого было доказано, что в сильно разряженной атмосфере помимо кислорода на спутнике имеется и углекислый газ, что дает повод задуматься о наличии жизни в глубинах океана.

Титан

Пожалуй, самый загадочный спутник Солнечной Системы. Титан, спутник Сатурна, был открыт в 17 веке. Его загадочность заключается в том, что плотная атмосфера не дает заглянуть на поверхность спутника, и ученым остается только догадываться, что же скрывается за ней.

На поверхности Титана находятся метановые озера. Ученые говорят о том, что Титан пригоден для жизни самых примитивных форм жизни.

По размерам Титан чуть больше Меркурия. Если бы он имел траекторию движения вокруг Солнца, то мог бы называться планетой.

Есть веские причины считать, что люди не только смогут выжить на Европе, спутнике Юпитера, но и найдут там уже существующую жизнь. Европа покрыта толстой ледяной коркой, однако многие ученые склонны считать, что под ней находится настоящий океан из жидкой воды. Кроме того, наличие твердого внутреннего ядра у Европы добавляет шансов на наличие правильной среды для поддержки жизни, будь то обычных микробов или, возможно, даже более сложных организмов.

Изучать Европу на предмет наличия условий для существования жизни и самой жизни определенно стоит. Как-никак это многократно увеличит шансы возможной колонизации этого мира. NASA хочет проверить, имеет ли вода Европы какую-то связь с ядром планеты и производится ли в результате этой реакции тепло и водород, как у нас на Земле. В свою очередь, исследование различных окислителей, которые могут присутствовать в ледяной корке планеты, укажет на уровень производимого кислорода, а также то, сколько его находится ближе к океанскому дну.

Есть предпосылки считать, что NASA займется плотным изучением Европы и попытками туда полететь где-то к 2025 году. Именно тогда мы и узнаем, верны ли те теории, которые связывают с этим ледяным спутником. Изучение на месте также может показать наличие активных вулканов под ледяной поверхностью, что, в свою очередь, тоже повысит шансы жизни на этом спутнике. Ведь благодаря этим вулканам в океане могут накапливаться важнейшие минералы.

Титан

Несмотря на то, что Титан, один из спутников Сатурна, находится во внешней границе Солнечной системы, этот мир является одним из наиболее интересных мест для человечества и, возможно, одним из кандидатов на будущую колонизацию.

Конечно же, для дыхания здесь потребуется использование специального оборудования (атмосфера непригодна для нас), однако необходимости в использовании специальных скафандров с регулируемым давлением здесь нет. Однако носить специальную защитную одежду, конечно, все же придется, так как здесь очень низкая температура, нередко опускающаяся до -179 градусов Цельсия. Сила гравитации на этом спутнике чуть ниже уровня гравитации на Луне, а значит ходить по поверхности будет относительно легко.

Придется, правда, серьезно подумать над тем, как выращивать урожай, и озаботиться вопросами искусственного освещения, так как солнечного света на Титан попадает всего от 1/300 до 1/1000 от земного уровня. Во всем виноваты плотные облака, которые, тем не менее, защищают спутник от чрезмерных уровней излучения.

На Титане нет воды, но есть целые океаны из жидкого метана. В связи с этим, некоторые ученые продолжают спорить над тем, могла бы ли в таких условиях образоваться жизнь. Как бы там ни было, на Титане есть что исследовать. Здесь имеется бесчисленное количество метановых рек и озер, большие горы. Кроме того, здесь должны быть просто потрясающие виды. Ввиду относительной близости Титана к Сатурну, планета на небе спутника (в зависимости от облачности) занимает до одной трети небосклона.

Миранда

Несмотря на то, что крупнейшим спутником Урана является Титания, Миранда, самая маленькая из пяти лун планеты, наиболее подходит для колонизации. На Миранде есть несколько очень глубоких каньонов, глубже, чем Большой каньон на Земле. Эти места могут стать идеальным местом для посадки и установки базы, которая будет защищена от внешнего воздействия суровой среды и особенно от радиоактивных частиц, производимых магнитосферой самого Урана.

На Миранде есть лед. Астрономы и исследователи подсчитали, что он составляет примерно половину состава этого спутника. Как и на Европе, есть вероятность наличия воды на спутнике, которая скрыта под ледяной шапкой. Наверняка это неизвестно, и мы этого не узнаем, пока не подберемся ближе к Миранде. Если на Миранде все же есть вода, то это говорило бы о серьезной геологической активности на спутнике, так как он находится слишком далеко от Солнца и солнечный свет не состоянии поддерживать здесь воду в жидкой форме. Геологическая активность, в свою очередь, все это бы объяснила. Несмотря на то, что это всего лишь теория (и, скорее всего, маловероятная), близкое расположение Миранды к Урану и его приливным силам может вызывать эту самую геологическую активность.

Есть ли здесь вода в жидкой форме или нет, но если мы установим на Миранде колонию, то очень низкая гравитация спутника позволит спуститься в глубокие каньоны без фатальных последствий. В общем, здесь тоже будет чем заняться и что исследовать.

Энцелад

Согласно некоторым исследователям, Энцелад, один из спутников Сатурна, может не только стать отличным местом для колонизации и наблюдения за планетой, но и является чуть ли не самым вероятным местом, которое уже поддерживает жизнь.

Энцелад покрыт льдом, однако наблюдения зондами с космоса показали геологическую активность на луне и в частности вырывающиеся с ее поверхности гейзеры. Космический аппарат «Кассини» собрал образцы и определил наличие жидкой воды, азота и органического углерода. Эти элементы, а также тот источник энергии, который выбросил их в космос, являются важными «кирпичиками жизни». Поэтому следующим шагом для ученых будет обнаружение признаков более сложных элементов и, возможно, организмов, которые могут скрываться под ледяной поверхностью Энцелада.

Исследователи считают, что лучшим местом для установки колонии будут зоны, рядом с которыми были замечены эти гейзеры, — огромные разломы на поверхности ледяной шапки южного полюса. Здесь замечена весьма необычная тепловая активность, эквивалентная работе примерно 20 угольных электростанций. Другими словами, для будущих колонистов здесь имеется подходящий источник тепла.

На Энцеладе имеется множество кратеров и разломов, только и ждущих, когда их начнут изучать. К сожалению, атмосфера спутника очень разряжена, а низкая гравитация может создать некоторые проблемы в освоении этого мира.

Харон

Космический аппарат NASA «Новые горизонты» после встречи с Плутоном отправил на Землю потрясающие изображения карликовой планеты и ее крупнейшего спутника Харона. Эти изображения вызвали жаркие споры в научном сообществе, которое теперь пытается определить: геологически активен или нет этот спутник. Оказалось, что поверхность Харона (как и Плутона) гораздо моложе, чем предполагалось ранее.

Несмотря на то, что в поверхности Харона имеются трещины, кажется, эта луна весьма эффективно избегает столкновения с астероидами, так как на ней очень мало ударных кратеров. Сами трещины и разломы очень похожи на те, которые остаются от течения раскаленной лавы. Такие же трещины были найдены на Луне и являются идеальным местом для установки колонии.

Считается, что Харон обладает очень разряженной атмосферой, что также может являться индикатором геологической активности.

Мимас

Мимас нередко называют «Звездой смерти». Вполне возможно, что под ледяной шапкой этого спутника может скрываться океан. И несмотря на общий зловещий вид этой луны, она, вероятно, действительно может подходить для поддержания жизни. Наблюдения космического зонда «Кассини» показали, что Мимас слегка раскачивается на своей орбите, что могло бы говорить о геологической активности под его поверхностью.

И хотя ученые очень осторожны в своих предположениях, других следов, которые указывали бы на геологическую активность спутника, обнаружено не было. Если на Мимасе будет обнаружен океан, то эта луна одной из первых должна быть рассмотрена в качестве наиболее подходящего кандидата для установки здесь колонии. Приблизительные расчеты указывают на то, что океан может скрываться на глубине около 24-29 километров под поверхностью.

Если необычное орбитальное поведение никак не связано с наличием жидкой воды под поверхностью этого спутника, тогда, вероятнее всего, все дело в его деформированном ядре. И винить в этом стоит сильный гравитационный пул колец Сатурна. Как бы там ни было, наиболее очевидным и самым надежным способом узнать, что же здесь происходит, является посадка на поверхность и проведение нужных замеров.

Тритон

Изображения и данные, полученные с космического аппарата «Вояджер-2» в августе 1989 года, показали, что поверхность крупнейшего спутника Нептуна, Тритона, состоит из камней и азотного льда. Кроме того, данные намекнули на то, что под поверхностью спутника может находиться жидкая вода.

Хотя Тритон обладает атмосферой, она настолько разряжена, что на поверхности спутника от нее нет никакого толка. Находиться здесь без особо защищенного скафандра — смерти подобно. Средняя температура на поверхности Тритона составляет -235 градусов Цельсия, что делает эту луну самым холодным космическим объектом в известной Вселенной.

Тем не менее для ученых Тритон очень интересен. И однажды они хотели бы туда добраться, установить базу и провести все необходимые научные наблюдения и исследования:

«Некоторые зоны поверхности Тритона отражают свет, как будто сделаны из чего-то твердого и гладкого, как металл. Считается, что данные зоны содержат пыль, азотный газ и, возможно, воду, которая просачивается сквозь поверхность и мгновенно замерзает в результате невероятно низкой температуры».

Кроме того, ученые подсчитали, что Тритон образовался примерно в то же время и из того же материала, что и Нептун, что весьма странно, учитывая размер спутника. Похоже, он сформировался где-то в другом уголке Солнечной системы, а затем был притянут гравитацией Нептуна. Более того, спутник вращается в противоположную своей планете сторону. Тритон — единственный спутник Солнечной системы, который обладает такой особенностью.

Ганимед

В отношении крупнейшего спутника Юпитера, Ганимеда, как и других космических объектов в нашей Солнечной системе, были выражены подозрения в наличие воды под поверхностью. По сравнению с другими покрытыми льдом спутниками, поверхность Ганимеда принято считать относительно тонкой и легкой для бурения.

Кроме того, Ганимед является единственным спутником в Солнечной системе, обладающим собственным магнитным полем. Благодаря этому над его полярными областями можно очень часто наблюдать северные сияния. Помимо этого, есть подозрения, что под поверхностью Ганимеда может скрываться жидкий океан. Спутник обладает разряженной атмосферой, в состав которой входит кислород. И хотя его крайне мало для поддержания той жизни, которую мы знаем, потенциал для терраформирования у спутника имеется.

В 2012 году запланировало космическую миссию к Ганимеду, а также двум другим спутникам Юпитера — Каллисто и Европе. Запуск собираются осуществить в 2022 году. Добраться до Ганимеда удастся 10 годами позже. Хотя все три спутника представляют большой интерес для ученых, считается, что Ганимед содержит наибольшее число интересных науке особенностей и потенциально пригоден для колонизации.

Каллисто

Размером примерно с планету Меркурий, вторым по размеру спутником Юпитера является Каллисто — еще одна луна, в отношении которой выражены предположения о содержании воды под ледяной поверхностью. Кроме того, спутник рассматривается как подходящий кандидат для будущей колонизации.

Поверхность Каллисто в основном состоит из кратеров и ледяных полей. Атмосфера спутника представляет собой смесь углекислого газа. Ученые уже выдвигают предположения о том, что весьма разряженная атмосфера спутника пополняется углекислым газом, вырывающимся из-под поверхности. Ранее полученные данные указывали на возможность наличия кислорода в атмосфере, однако дальнейшие наблюдения эту информацию не подтвердили.

Так как Каллисто находится на безопасной дистанции от Юпитера, излучение от планеты будет относительно низким. А отсутствие геологической активности делает среду спутника более стабильной для потенциальных колонистов. Другими словами, построить колонию здесь можно и на поверхности, а не под ней, как во многих случаях с другими спутниками.

Луна

Вот мы и подобрались к первой потенциальной колонии, которую установит человечество за пределами своей планеты. Речь, конечно же, идет о нашей Луне. Многие ученые склонны считать, что колония на нашем естественном спутнике появится уже в ближайшее десятилетие и вскоре после этого Луна станет отправной точкой для более дальних космических миссий.

Крис Маккей, астробиолог NASA, является одним из тех, кто считает, что Луна является наиболее вероятным местом для первой космической колонии людей. Маккей уверен в том, что дальнейшее освоение Луны с космической миссией после «Аполлон-17» не продолжилось исключительно из соображения стоимости этой программы. Однако нынешние технологии, разработанные для использования на Земле, также могут быть очень экономически выгодными и для использования в космосе и существенно удешевят как стоимость самих запусков, так и строительство на поверхности Луны.

Несмотря на то, что сейчас самой большой миссией для NASA является высадка человека на Марсе, Маккей уверен, что осуществить этот план удастся не раньше того момента, как на Луне появится первая лунная база, которая станет отправной точкой для дальнейших миссий к Красной планете. Не только многие государства, но и многие частные компании проявляют интерес к колонизации Луны и даже готовят соответствующие планы.

Спутник - это плотный естественный объект, который вращается вокруг планеты. Никакое конкретное научное объяснение не дает удовлетворительного ответа на вопрос о том, как появились спутники, хотя существует несколько теорий. Луна считалась единственным спутником, но после изобретения телескопа были обнаружены спутники других . Каждая планета имеет один или несколько спутников, кроме Меркурия и Венеры. У Юпитера наибольшее количество спутников - 67. Технологические достижения позволили человеку обнаружить и даже отправить космические аппараты в экспедиции к другим планетам и их спутникам.

Самыми большими спутниками в нашей Солнечной системе являются:

Ганимед

Ганимед - крупнейший спутник в нашей системе, вращающийся вокруг Юпитера. Его диаметр 5 262 км. Спутник превосходит по размерам Меркурий и Плутон, и его с легкостью можно было назвать планетой, если бы он вращался вокруг Солнца. Ганимед обладает собственным магнитным полем. Его открытие осуществил итальянский астрономом Галилео Галилей 7 января 1610 года. Орбита спутника находится на расстоянии около 1 0700 400 км от Юпитера, и ему требуется 7,1 земных дня, чтобы завершить свою орбиту. Поверхность Ганимеда имеет два основных типа пейзажей. На нем есть более светлые и молодые регионы, а также более темная кратерная область. Атмосфера спутника тонкая и содержит кислород в дисперсных молекулах. Ганимед в основном состоит из водяного льда и горной породы, и предположительно имеет подземные океаны. Название спутника происходит от имени принца в древнегреческой мифологии.

Титан

Титан - спутник Сатурна, диаметром 5 150 км, что делает его вторым по величине спутником в Солнечной системе. Он был открыт голландским астрономом Христианом Гюйгенсом в 1655 году. Спутник обладает плотной атмосферой, похожей на земную. На 90% атмосфера состоит из азота, а на остальные 10% приходятся метан, незначительное количество аммиака, аргона и этана. Титан делает полный оборот вокруг Сатурна за 16 дней. На поверхности спутника присутствуют моря и озера, заполненные жидкими углеводородами. Это единственное космическое тело в Солнечной системе, кроме Земли, которое имеет водные объекты. Название спутника взято из древнегреческой мифологии, в честь древних богов, называемых титанами. Лед и порода составляют основную часть массы Титана.

Каллисто

Каллисто - второй по размерам спутник Юпитера и третий в рейтинге самых больших спутников Солнечной системы. Он имеет диаметр 4821 км и, по оценкам ученых, ему около 4,5 млрд лет; его поверхность в основном испещрена кратерами. Каллисто был открыт Галилео Галилеем 7 января 1610 года. Свое название спутник получил в честь нимфы из древнегреческой мифологии. Каллисто вращается вокруг Юпитера на расстоянии около 1 882 700 км, и завершает свою орбиту за 16,7 земных дня. Это самый удаленный от Юпитера спутник, а это означает, что он не был в значительной степени подвержен мощной магнитосфере планеты. Водяной лед, а также другие материалы, такие как магний и гидратированные силикаты составляет большую часть массы спутника. Каллисто имеет темную поверхность, и предполагается, что под ней находится соленое море.

Ио

Ио - третий по величине спутник Юпитера и четвертый в Солнечной системе. Его диаметр равен 3 643 км. Первым спутник обнаружил Галилео Галилей в 1610 году. Это самое вулканически активное космическое тело наряду с Землей. Его поверхность в основном состоит из пойм жидких пород и лавовых озер. Ио расположен примерно в 422 000 км от Юпитера, и делает полный оборот вокруг планеты за 1,77 земных дня. Спутник имеет пятнистый вид с доминированием белого, красного, желтого, черного и оранжевого цветов. В атмосфере Ио преобладает двуокись серы. Спутник был назван в честь нимфы из древнегреческой мифологии, которая была соблазнена Зевсом. Под поверхностью Ио находится железное ядро и внешний слой из силикатов.

Другие крупные спутники

К другим большим спутникам Солнечной системы относятся: Луна (3 475 км), Земля; Европа (3 122 км), Юпитер; Тритон (2 707 км), Нептун; Титания (1 578 км), Уран; Рея (1 529 км), Сатурн и Оберон (1,523 км), Уран. Большинство наблюдений за этими спутниками проводятся с Земли. Развитие технологий дает возможность ученым отправлять космические аппараты в разные уголки Солнечной системы, чтобы получить больше информации о планетах и их спутниках.

Таблица: ТОП 10 самых больших спутников в Солнечной системе

Место в рейтинге Спутник, Планета Средний диаметр
1 Ганимед, Юпитер 5 262 км
2 Титан, Сатурн 5 150 км
3 Каллисто, Юпитер 4 821 км
4 Ио, Юпитер 3 643 км
5 Луна, Земля 3 475 км
6 Европа, Юпитер 3 122 км
7 Тритон, Нептун 2 707 км
8 Титания, Уран 1 578 км
9 Рея, Сатурн 1 529 км
10 Оберон, Уран 1 523 км

Самая большая планета Солнечной системы

Самой большой планетой Солнечной системы и наиболее массивной из них является Юпитер. Его экваториальный диаметр равен 143884 км, что в 11,209 раз превышает диаметр Земли и составляет 0,103 диаметра Солнца. По объему эквивалентен 1319 объемам Земли. Масса Юпитера в 318 раз превышает массу Земли, и в 2,5 раза больше массы всех остальных планет, вместе взятых. Для того, чтобы образовалась масса, равная массе Солнца, потребуется 1047 таких планет, как Юпитер.

Экваториальный диаметр следующей самой большой планеты, Сатурна, составляет 0,84 диаметра Юпитера, а его масса равна 0,30 массы самой большой планеты. Юпитер, так и Сатурн смогли достичь столь больших размеров потому, что они формировались в ранний период развития Солнечной системы в таком месте, где можно было собрать большое количества газа протопланетной туманности.

Планета с самым большим количеством лун

За последнее десятилетие было открыто много новых лун гигантских планет – Юпитера, Сатурна, Урана и Нептуна. На 1 октября 2004 г. наибольшее количество лун имел Юпитер – 63, за ним шел – 33 луны, затем – 26 и – 13. Вполне вероятно, что у всех четырех планет есть до сих пор не открытые небольшие луны. Происхождение планетарных лун не вполне ясно. Однако кажется вероятным, что большие луны этих гигантских газовых планет сформировались вместе и одновременно с родительскими планетами, а небольшие внешние луны являются астероидами, захваченными позднее.

Самая горячая планета

На Венере температура поверхности составляет от 460 до 480 °C, благодаря чему ее можно считать самой горячей планетой в Солнечной системе. Высокая температура венерианской поверхности связана с наличием у нее плотной атмосферы, состоящей из углекислого газа. Атмосфера выполняет роль теплоизолирующего одеяла. Средняя температура поверхности на 500 градусов выше той, которая была бы при отсутствии атмосферы. Солнечное излучение проникает через облака Венеры, а из-за наличия в атмосфере углекислоты возникает явление, известное как парниковый эффект.

В ранней истории Солнечной системы, когда Солнце было не столь ярким, как сейчас, Венера была холоднее, и, вероятно, на ней были океаны жидкой воды. Вода постепенно испарялась, способствуя возникновению парникового эффекта, но примерно за миллион лет вся она рассеялась в космическом пространстве. По мере повышения температуры из скальных пород на поверхности планеты освобождалось все больше углекислоты, что привело к стремительному развитию парникового эффекта и к наблюдаемому ныне перегреву Венеры.

Самая яркая планета Солнечной системы

Самая яркая планета Солнечной системы – . Ее максимальная звездная величина равна -4,4. Венера ближе всех находится к Земле и, кроме того, эффективно отражает солнечный свет, поскольку поверхность планеты закрыта облаками. Верхние слои облаков Венеры отражают 76% падающего на них солнечного света.

Венера выглядит наиболее яркой, когда находится для земного наблюдателя в фазе серпа. Орбита Венеры лежит ближе к Солнцу, чем орбита Земли, поэтому диск Венеры полностью освещен только тогда, когда она находится на противоположной от Солнца стороне. В это время расстояние до Венеры самое большое, а ее видимый диаметр – самый маленький.

Самая маленькая планета Солнечной системы

Самая маленькая планета Солнечной системы – Плутон. Его диаметр равен всего 2400 км. Период вращения 6.39 суток. Масса в 500 раз меньше земной. Имеет спутник Харон, открытый Дж. Кристи и Р. Харрингтоном в 1978 году. В 2006 году Плутон был признан карликовой планетой.

Самая ветреная планета в Солнечной системе

Самые большие скорости ветра в Солнечной системе были зарегистрированы на Нептуне в экваториальной области планеты. Крупномасштабные атмосферные образования движутся здесь с востока на запад со скоростью около 325 м/сек относительно ядра планеты, а более мелкие перемещаются почти вдвое быстрее. Это означает, что скорости потоков у экватора Нептуна приближаются к сверхзвуковым.

Скорость звука в атмосфере Нептуна составляет примерно 600 м/сек. Сильные ветры наблюдаются на всех гигантских планетах, однако не ясно, почему самое быстрое движение атмосферы отмечается именно на Нептуне. Возможно, это связано с влиянием внутренних источников тепла Нептуна. Вторая среди “самых ветреных” планет – Сатурн, где максимальные скорости ветра примерно вдвое меньше, чем на Нептуне.

Самое холодное место в Солнечной системе

Самая низкая температура, когда-либо зарегистрированная на поверхности тел в Солнечной системе – это температура одной из лун Нептуна, Тритона. По измерениям, сделанным “Вояджером-2”, эта температура оказалась равной –235 °C, что всего на 38 °C выше абсолютного нуля. Температура поверхности Плутона почти наверняка близка к этим значениям, но пока мы имеем только ее оценки, сделанные с поверхности Земли.

По этим оценкам яркие области Плутона имеют температуру около –233 °C, а более темные примерно на 20 °C теплее. Плутон и Тритон кажутся очень похожими друг на друга: степень их подобия намного больше, чем у любой другой пары тел в Солнечной системе. Поверхностная температура планет или лун зависит от нескольких факторов: насколько велико расстояние от Солнца, имеется ли внутренний источник тепла, каково влияние атмосферы. Как Тритон, так и Плутон получают от Солнца очень мало тепла, не имеют внутреннего источника тепла и сильно охлаждаются за счет испарения льда с их поверхности.

Самая большая луна

Самая большая в Солнечной системе луна – спутник Юпитера Ганимед, диаметр которого равен 5262 км. Самая большая луна Сатурна, Титан – по размеру второй (диаметр составляет 5150 км), хотя раньше считалось, что Титан больше Ганимеда. На третьем месте идет соседний с Ганимедом спутник Юпитера Каллисто. Ганимед, так и Каллисто, больше чем планета Меркурий (диаметр которого 4878 км). Ганимед своим статусом “самой большой луны” обязан толстой мантии льда, которая покрывает его внутренние слои, состоящие из скальных пород.

Твердые ядра Ганимеда и Каллисто, вероятно, близки по своим размерам к двум небольшим внутренним галилеевым лунам Юпитера – Ио (3630 км) и Европе (3138 км). Однако из-за близости к Юпитеру они получают больше тепла, так что Ио совсем не имеет ледяной мантии, а у Европы имеется только тонкая корка льда, возможно, со слоем растаявшей подо льдом воды. В отличие от них, Ганимед наполовину состоит изо льда, а наполовину из твердых пород.

Самая маленькая луна

Самая маленькая луна, размеры которой точно известны – спутник Марса . Его форма близка к эллипсоиду с осями 15x12x11 км. Возможный соперник Деймоса – луна Юпитера , диаметр которой оценивается примерно в 10 км. Размеры других небольших лун, вращающихся вокруг внешних планет точно определить трудно, поскольку их можно наблюдать только как точечные объекты. Оценки их размеров зависят от того, какое значение принять для отражательной способности их поверхности.

Диаметры некоторых недавно открытых лун Юпитера и Сатурна оцениваются всего в несколько километров. Считается, что Деймос, как и другой спутник Марса, а также большинство новых лун гигантских планет представляют собой астероиды, захваченные планетами. Оба спутника Марса имеют очень темную поверхность, отражая всего несколько процентов падающего на них света. Эти спутники подобны астероидам, которые обычно находят во внешней части пояса астероидов и в группе троянцев – астероидов, связанных с Юпитером. Возможно, что и Леда представляет собой астероид, захваченный Юпитером и оказавшийся на орбите вокруг него.

Самый высокий вулкан в Солнечной системе

Самые высокие вулканы в Солнечной системе – щитовые вулканы на Марсе. Наибольшую высоту из них имеет гора Олимп. Ее вершина поднимается на 25 км выше уровня окружающего плато, причем поперечник основания составляет почти 550 км. Для сравнения: Гавайские острова на Земле возвышаются над морским дном всего на 10 км. Щитовые вулканы растут в высоту постепенно, в результате повторных извержений из одного и того же жерла. На Марсе щитовые вулканы намного больше, чем на Земле благодаря нескольким причинам.

Хотя в настоящее время эти вулканы, по-видимому, уже не являются действующими, они, вероятно, образовались раньше и были активными намного дольше, чем любые вулканы на Земле. При этом горячие вулканические точки на Земле с течением времени изменяли свое местоположение из-за постепенного движения континентальных плит, так что для “построения” очень высокого вулкана в каждом отдельном случае времени не хватало. Кроме того, низкое тяготение позволяет изверженному веществу образовывать на Марсе намного более высокие структуры, которые не обрушиваются под собственной тяжестью.

Самая наблюдаемая комета

Больше всего возвращений к Земле было отмечено у периодический кометы 2P/Энке. Так как она никогда не удаляется от Солнца дальше чем на 4 астрономические единицы, едва выходя за пределы пояса астероидов, при современных методах наблюдения ее можно наблюдать непрерывно. Комета 2P/Энке находится на необычной орбите – ее период равен всего 3,3 года, что намного меньше, чем у любой другой периодической кометы. Независимые “открытия” этой кометы были сделаны сначала Пьером Мешеном (в 1786 г.) и Каролиной Гершель (в 1795 г.), а затем (в 1805 и 1818 гг.) – Жаном Луи Понсом. Но уже в 1819 г. Иоганн Энке понял, что все эти наблюдения относятся к одной и той же комете, и вычислил ее орбиту. С тех пор до 2005 г. было зарегистрировано 59 прохождения кометы через перигелий. Количество появлений этой кометы в небе можно, например, сравнить с 30 известными возвращениями кометы Галлея с 239 г. до н.э. до 1986 г.

Комета, наблюдавшаяся в течение самого большого периода времени

Комета Галлея (1P) в 1986 г. Наблюдения кометы Галлея, официально известной как комета 1P/Галлея, были прослежены назад вплоть до 239 г. до н. э. Ни для одной другой периодической кометы нет исторических записей, которые могли бы сравниться с кометой Галлея. Комета Галлея уникальна: она наблюдалась на протяжении более двух тысяч лет 30 раз. Это связано с тем, что эта комета намного больше и активнее других периодических комет.

Комета названа по имени Эдмунда Галлея, который в 1705 г. понял связь между несколькими предыдущими появлениями кометы и предсказал ее возвращение в 1758-59 гг. В 1986 г. космический аппарат “Джотто” смог получить изображение ядра кометы Галлея с расстояния всего в 10 тысяч километров. Оказалось, что ее ядро имеет в длину 15 км при ширине 8 км. Кома и хвост этой самой известной кометы образуются при нагревании ядра Солнцем. И выбросы газа и пыли прорываются через темную оболочку, покрывающую ледяное ядро.

Самая яркая комета

На основании сохранившихся записей нельзя судить о том, какая из наблюдавшихся в прошлом комет была самой яркой. Так как яркие кометы представляют собой очень протяженные небесные объекты, точно определить их яркость почти невозможно. Впечатления, получаемые наблюдателем от той или иной кометы, очень субъективны; они зависят от длины хвоста и от того, насколько темным было небо во время наблюдения.

К самым ярким кометам XX столетия относятся так называемая “Великая комета Дневного света” (1910 г.), комета Галлея (при появлении в том же 1910 г.), кометы Шеллерупа-Маристани (1927 г.), Беннетта (1970 г.), Веста (1976 г.), Хейла-Боппа (1997 г.). Самые яркие кометы XIX века, – вероятно, “Большие кометы” 1811, 1861 и 1882 гг. Ранее очень яркие кометы были зарегистрированы в 1743, 1577, 1471 и 1402 гг. Самое близкое к нам (и наиболее яркое) появление кометы Галлея было отмечено в 837 г.

Самый близкий подход кометы к Земле

Среди зарегистрированных сближений комет наиболее близко к Земле подходила комета Лекселя в 1770 г. Наименьшее расстояние до Земли было достигнуто 1 июля 1770 г. и составило 0,015 астрономических единицы (т.е. 2,244 миллиона километров). Это в шесть раз превышает расстояние до Луны. Когда комета находилась ближе всего, видимый размер ее комы был равен почти пяти диаметрам полной Луны.

Комета была открыта Шарлем Мессье 14 июня 1770 г., но свое название получила по имени Андерса Иоганна (Андрея Ивановича) Лекселя, который определил орбиту кометы и результаты своих вычислений в 1772 и 1779 гг. Он обнаружил, что в 1767 г. комета близко подошла к Юпитеру и под его гравитационным воздействием перешла на орбиту, которая проходила вблизи Земли. Однако при следующем, еще более близком подходе к Юпитеру, возмущение траектории кометы Лекселя оказалось настолько большим, что с Земли она больше не наблюдалась.

Самый большой астероид

Седна (2003 VB 12) является наиболее крупным и дальним астероидом Солнечной системы. Он немного меньше, чем Плутон, и его диаметр оценивается в 1700 км.

Орбита Седны очень вытянута, в настоящее время астероид находится на расстоянии около 90 а.е. от Солнца. Седна является потенциальным членом облака Оорта.