Непорочное зачатие в животном мире и у людей. Партеногенез – девственное размножение Кто размножается партеногенезом

Партеногенезом в биологии называют так званное «девственное размножение», то есть форма полового размножение организмов, характерная тем, что женские половые клетки развиваются во взрослый организм без оплодотворения. И даже, несмотря на то, что при партеногенезе не происходит слияния мужских и женских гамет, подобное размножение все равно считается половым, ведь организм развивается из половой клетки.

Биологическое значение партеногенеза

Основное значение партеногенеза в том, что благодаря ему, те виды, чьи особи представлены преимущественно самками (например, ) могут ускорено размножаться без участия мужского начала. Также часто бывает, что из оплодотворенных яйцеклеток появляются самки, а из неоплодотворенных самцы и таким образом, с помощью партеногенеза происходит регуляция численных соотношений полов.

Виды партеногенеза

В науке есть несколько способов классификации этого удивительного биологического явления:

  • По способу размножения: естественный (происходящий в природных условиях) и искусственный (воспроизведенный в лаборатории).
  • По полноте протекания: рудиментарный – когда неоплодотворенные клетки начинают деление, но зародышевое развитие прекращается на раннем этапе; и полный, когда это самое зародышевое развитие доходит до формирования взрослой особи.
  • В зависимости от пола организма различается гиногенез (партеногенез самок) и андрогенез (партеногенез самцов).

Партеногенез у животных: примеры

В животном мире явления партеногенеза встречается у:

  • муравьев
  • некоторых растений

И часто партеногенез соседствует с обычным половым размножением, применяясь в тех случаях, когда необходим быстрый рост популяции.

Партеногенез у пчел

У пчел при партеногенезе из неоплодотворенных яиц рождаются самцы, они же трутни, из оплодотворенных исключительно самки, которые в свою очередь делятся на размножающуюся матку (королеву улья) и бесплодную рабочую пчелку.

Партеногенез у муравьев

В муравьином царстве явление партеногенеза присутствует у восьми видов муравьев и может условно разделится на три вида:

  • самки производят рабочих муравьев и других самок через него, при этом рабочие самцы стерильны.
  • рабочие муравьи производят самок посредством партеногенеза.
  • самки производят других самок посредством партеногенеза, а рабочих муравьев самцов – обычным половым путем.

Партеногенез у растений

У растений процесс партеногенеза имеет свой отличный академический термин – апомиксис. Представляет он собой вегетативное размножение либо размножение семенами, появившимися без оплодотворения: либо в случае разновидности или же из диплоидных клеток семязачатка. У многих растений существует двойное оплодотворение и у некоторых как следствие возможно явление псевдогамии, когда растения семена получаются с зародышем, образованным из неоплодотворенной яйцеклетки.

Партеногенез у ящериц

Существует лишь несколько видов ящериц, размножающихся столь необычным образом, среди них, например комодские вараны, обладающие удвоенной копией яиц ДНК и специальным веществом – полоцитом, способным выступать в качестве спермы, оплодотворяя яйцеклетку, превращая ее в эмбрион.

Партеногенез у человека

На данный момент случаи партеногенеза у человека выглядят как чистая фантастика, пусть и научная. Но вполне возможно, что в будущем что-то подобное и будет возможно, вопрос только зачем?

Партеногенез, видео

И в завершение интересные размышления о возможности партеногенез у человека, о том, что было бы при рождении от самого себя.

Партеногенез (Parthenogenesis - от греч. parthenos - девушка, девственница + genesis -зарождение) - форма полового размножения, при котором развитие организма происходит из женской половой клетки (яйцеклетки) без оплодотворения ее мужской (сперматозоид).

В тех случаях, когда партеногенетические виды представлены (всегда или периодически) только самками, одно из главных биологических преимуществ партеногенеза заключается в ускорении темпа размножения вида, так как все особи подобных видов способны оставить потомство. В тех случаях, когда из оплодотворённых яйцеклеток развиваются самки, а из неоплодотворённых - самцы, партеногенез способствует регулированию численных соотношений полов (например, у пчел).

Партеногенез следует отличать от бесполого размножения , которое осуществляется всегда при помощи соматических органов и клеток (размножение делением, почкованием и т.п.).

Различают партеногенез естественный - нормальный способ размножения некоторых организмов в природе и искусственный , вызываемый экспериментально действием разных раздражителей на неоплодотворённую яйцеклетку, в норме нуждающуюся в оплодотворении.

Партеногенез у животных

Исходная форма партеногенеза - зачаточный, или рудиментарный партеногенез - свойственен многим видам животных в тех случаях, когда их яйца остаются неоплодотворёнными. Как правило, зачаточный партеногенез ограничивается начальными стадиями зародышевого развития; однако иногда развитие достигает конечных стадий.

При андрогенезе ядро женской половой клетки (яйцеклетки) в развитии не участвует, а новый организм развивается из двух слившихся ядер мужских половых клеток (сперматозоидов). Естественный андрогенез встречается в природе, например у перепончатокрылых насекомых - наездников. Искусственный андрогенез используется для получения потомства у тутового шелкопряда: при андрогенезе в потомстве получаются только самцы, а коконы самцов содержат существенно больше шёлка, чем коконы самок.

В случае гиногенеза ядро сперматозоида не сливается с ядром яйцеклетки, а только стимулирует её развитие (ложное оплодотворение). Гиногенез свойствен круглым червям, костистым рыбам и земноводным. При этом в потомстве получаются одни самки.

У человека известны случаи, когда под влиянием стрессовых ситуаций высоких температур и в других экстремальных ситуациях женская яйцеклетка может начать делится, даже если не оплодотворена, но в 99, 9% случаев она вскоре погибает (по некоторым данным в истории известны 16 случаев непорочного зачатия , имевшие место в Африке и странах Европы).

Материал подготовлен на основе информации открытых источников

11 Марта 2009

Олег Макаров, журнал «Популярная механика» № 3-2009
(редакция выражает благодарность сайту «Вечная молодость»
за помощь в написании статьи)

Большая часть мира живого разделена пополам. По полам. На пол женский и пол мужской. Сделав производство потомства делом двух особей вместо одной, природа совершила шаг вперед, так как смешение генетического материала дает шанс на появление более жизнеспособных организмов. Но есть и обратный путь. Порой в силу разных причин женская особь, давая жизнь потомству, обходится, так сказать, без папы…

Это явление получило название «партеногенез» от двух греческих слов παρθενος – девственница и γενεσις – рождение. Вообще говоря, мы с детских лет знаем, что новые живые организмы вполне могут возникать без всяких там тычинок и пестиков. Кустик клубники, раскидывая по грядке усы, вырастит потомство в виде точно таких же кустиков, воткнутая в землю ветка (модное слово «клон» по-гречески – «черенок») превратится в новое дерево…

Исторически предшествовавшее половому бесполое размножение строится на процессе митоза – простого деления живой клетки. В результате образуются две клетки с одинаковым набором генов – точные копии родительской, сохранившие, образно выражаясь, все ее достоинства и пороки. Изменения от поколения к поколению могут происходить лишь в результате генетических мутаций. Правда, микробы прекрасно приспосабливаются к меняющимся условиям среды вроде воздействия антибиотиков, но они берут числом и скоростью размножения. И даже у них существует что-то вроде полового процесса – обмена генами между клетками одного, а иногда – и совершенно разных видов. А у подавляющего большинства растений и самых примитивных представителей животного царства (вроде дождевых червей и морских звезд), способных к вегетативному размножению, оно дополняет, но не заменяет половой процесс.

Игра природы

При половом размножении чертеж нового организма, заложенный в его ДНК, создается случайным сочетанием генетического материала двух родителей. Игральные кости брошены на стол. Какая комбинация выйдет в итоге, повышающая или понижающая шансы на выигрыш в борьбе за существование – дело случая, но без постоянной перетасовки генов и отбора их оптимальных комбинаций сложные многоклеточные организмы не смогли бы эволюционировать.

Если продолжить ассоциацию с азартными играми, геном эукариотических (имеющих клеточное ядро) организмов, от дрожжей до человека, составлен из двух «колод» – парных генов (аллелей), расположенных на парных хромосомах. Соматические (телесные, от греч. «сома» – тело) клетки при росте организма и замещении отмерших клеток размножаются тем же простым делением – митозом, при котором набор хромосом передается неизменным от родительской клетки дочерним. Мутации в соматических клетках могут привести к различным (обычно неприятным) последствиям, но в следующее поколение они не передаются.

Половые клетки образуются в результате намного более сложного процесса деления – мейоза, при котором из первичных половых клеток – оогониев (женских) и сперматогониев (мужских) образуются соответственно в яйцеклетки и сперматозоиды. При этом диплоидная (несущая в себе полный набор генетической информации в двух парах хромосом) первичная половая клетка превращается в гаплоидную, с одной хромосомой из каждой пары и, соответственно, одним из каждой пары родительских генов. Во время мейоза парные хромосомы обмениваются участками, и каждой яйцеклетке или сперматозоиду достается случайный набор генов, полученных от бабушки и дедушки будущего младенца (или бабочки, цветочка и любого другого способного к половому размножению организма). Две половые клетки сливаются в одну – зиготу, которая некоторое время спустя начнет делиться митотическим способом, развиваясь в зародыш. Но и неоплодотворенная яйцеклетка может начать делиться – именно это и называется партеногенезом. Следует сразу уточнить: партеногенез является не бесполым размножением, а разновидностью полового (с присущими ему биологическими процессами) однако с участием лишь женских половых клеток.

Целомудренные коловратки

Партеногенез в живой природе не является чем-то исключительным. Коловратки – крошечные (от 40 мкм до 2 мм) обитатели пресноводных водоемов, выделенные в систематике в отдельный тип царства «Животные» – уже 40 миллионов лет представлены только женскими особями, производящими потомство исключительно путем партеногенеза. При всей прогрессивности полового размножения вариант с происхождением потомства от одной особи имеет свои плюсы. Например, когда среда благоприятствует быстрому размножению вида и вокруг достаточно пищи для многочисленного потомства, партеногенез дает выигрыш в скорости заселения этой среды. В этом случае можно пожертвовать генетическим разнообразием (потомство несет в себе лишь хромосомы матери), зато мобилизовать на размножение весь потенциал вида. Когда условия изменятся в неблагоприятную сторону, естественный отбор отсеет менее приспособленные организмы. Но коловратки – это скорее исключение из правил. У многих видов растений, членистоногих, земноводных, рептилий и даже птиц существует не облигатная (обязательная) форма партеногенеза, а факультативная – при подходящих обстоятельствах. Например, у некоторых видов тлей переход к партеногенезу и обратно имеет характер сезонных колебаний.

Затосковавшая акула

Удивительно, однако, что порой к партеногенезу прибегают виды живых организмов, которые раньше, что называется, не были в этом замечены. В последние годы описаны несколько поразительных случаев партеногенеза у акул, у которых до этого партеногенеза никогда не наблюдали. В 2001 году в зоопарке Henry Doorly в штате Небраска (США) малоголовая рыба-молот (малоголовая – это видовое название, а не дразнилка) произвела на свет детеныша после длительного пребывания в резервуаре с водой, где не было самцов. Это «непорочное зачатие» поначалу поставило ученых в тупик. В числе прочих рассматривался вариант с длительным сохранением спермы от давнего полового контакта – такое явление «ложного партеногенеза» порой наблюдается в природе. Расставить точки над «i» помог несчастный случай: выросший детеныш погиб от укола ската. Результат ДНК-анализа однозначно показал, что в клетках детеныша не было никакого генетического материала, кроме материнского. Некая программа, спрятанная в ДНК акулы, которая в естественных условиях размножается исключительно через оплодотворение, включила резервный механизм сохранения вида – партеногенез. Таким образом, причиной партеногенетического размножения может стать и отсутствие самцов, например, на границе ареала вида.

Похожий случай произошел в 2002 году в океанариуме г. Детройт (США), а затем в Венгрии. В 2006 году в лондонском зоопарке партеногенетический детеныш вылупился из яйца самки коммодского варана. На воле коммодские вараны также не были замечены в склонности к партеногенезу.

Однако можно ли сказать, что эти детеныши были клонами, точной генетической копией материнских организмов? Нет, в данном случае это не так.

Дело в том, что биологически партеногенез осуществляется в основном двумя путями. Один из них заключается в том, что первичная женская половая клетка, не проходя стадию мейоза, начинает делиться митотическим путем, создавая собственную копию. В случае же с высокоразвитыми животными полученная в ходе мейоза яйцеклетка, имеющая, как мы помним, гаплоидный – половинный – набор хромосом, сливается с другой яйцеклеткой, тоже с половинным, но по-другому скомбинированным набором «бабушкиных» и «дедушкиных» хромосом. В обоих случаях из-за перетасовки аллелей генов, происходящей при образовании гаплоидной яйцеклетки, генотип и определяемые им свойства родившегося с помощью партеногенеза организма будут в той или иной степени отличаться от материнского.

И у акул, и у варана партеногенетические детеныши имели женский пол, что естественно для живых организмов, у которых мужской пол передается через Y-хромосому, находящуюся только в мужских половых клетках. У некоторых видов живых существ наследование пола осуществляется иначе: например, у одной из пород индеек многие яйца развиваются партеногенетически, и из них появляются только самцы. У пчел и муравьев партеногенез используется для регулирования соотношения полов: из оплодотворенных яиц развиваются самки, а из неоплодотворенных – самцы. А некоторые виды костистых рыб «соблазняют» самцов другого вида. Сперматозоид при этом не проникает в яйцеклетку, а только стимулирует удвоение ее хромосом и деление.

Соперники бога

В рассуждениях о партеногенезе неизбежно всплывает тема одного из главных догматов христианства – непорочного зачатия Девы Марии. Не хранят ли евангельские предания свидетельство о партеногенетическом рождении человека? Но в этом случае младенец должен был бы родиться девочкой из-за отсутствия в яйцеклетке Y-хромосом, а участие в непорочном зачатии Св. Духа в компетенцию науки не входит. Однако если вынести за скобки вмешательство сверхъестественных сил, то не только человек, но и любое другое млекопитающее к «непорочному зачатию» неспособны. На пути партеногенеза человека природой воздвигнут мощный заслон, имя которому – геномный импринтинг.

Смысл этого мудреного термина заключается в том, что для развивающегося зародыша млекопитающего, образно говоря, небезразлично, от кого достался тот или иной ген – от мамы или от папы. Ген, отвечающий за развитие какого-нибудь жизненного важного органа, просто не будет проявлять себя, если он имеет неправильный половой маркер. Именно поэтому, даже если яйцеклетка млекопитающего начнет делиться, скажем, под действием неких внешних раздражителей, нет никаких шансов на то, что в результате на свет появится жизнеспособный организм. Геномный импринтинг заблокирует развитие зародыша на ранних стадиях. Если, конечно, в дело не вмешается генная инженерия.

Добиться первого партеногенетического рождения млекопитающих удалось в 2004 году ученым из Токийского сельскохозяйственного университета. Японцы применили разработанную ими технологию гаплоидизации, то есть искусственного (без мейоза) превращения соматических клеток самки мыши в гаплоидные (подобные то ли мужским, то ли женским гаметам) клетки. Затем в лабораторных условиях удалось добиться слияния этих клеток, «обманув» при помощи особых технологий геномный импринтинг. И, наконец, уже в материнском организме, из клетки начал развиваться зародыш.

О том, насколько тяжело далось генетикам вмешательство в святая святых живой природы, говорят цифры. Около 500 искусственно гаплоидизированных клеток дали возможность вызвать всего 24 беременности, из которых только две привели к родам. Развиться в полноценный организм удалось лишь одному детенышу. Впрочем, для начала результат не так уж плох: у овечки Долли на стадии оплодотворенной яйцеклетки было почти 300 сестёр.

Просто фантастика

Клонирование приматов из-за особенностей развития их оплодотворенных яйцеклеток во время самых первых делений технически всё еще невозможно. И ни один серьезный ученый не ставил перед собой задачу репродуктивного клонирования человека. Многочисленные попытки научиться выращивать человеческие эмбрионы методом переноса клеточного ядра – того же самого, с помощью которого родилась Долли – нужны для терапевтического клонирования.

Аферист-первопроходец
С терапевтическим клонированием связан один из крупнейших за последние годы научных скандалов. В феврале 2004 г. журнал Science опубликовал статью одного из ведущих специалистов в области клонирования, корейского ученого У-Сук Хвана и его коллег, о сенсационном результате: впервые в мире получен клонированный человеческий эмбрион, из которого выделена жизнеспособная культура стволовых клеток. В мае 2005 в том же Science появилась вторая сенсация – о создании в лаборатории Хвана уже одиннадцати линий человеческих эмбриональных стволовых клеток, также полученных методом переноса ядра соматической клетки. А уже в конце года среди ученых и журналистов поползли сначала слухи, потом – достаточно обоснованные подозрения… В конце концов Хван признался в том, что все эти результаты были фальсифицированы, ушел со всех официальных постов, и в телевизионном выступлении принес извинения научной общественности и корейскому народу. Правда, под его руководством продолжаются работы по клонированию животных – но в частных компаниях.

При этом, как и при получении культур эмбриональных стволовых клеток из «отходов» экстракорпорального оплодотворения – оплодотворенных про запас яйцеклеток, эмбрион из яйцеклетки с пересаженным ядром донора предполагается разрушать на ранней стадии. Такие клетки не будут отторгаться при клеточной терапии и пересадке донору ядра изготовленных из них тканей и даже целых органов. Но и работы с обычными клетками человеческих эмбрионов, и любое, даже терапевтическое, клонирование человеческих клеток вызывают сопротивление со стороны религиозных фундаменталистов и других блюстителей морали. Это – одна из причин, по которым некоторые специалисты пытались пойти обходными путями, например, получить химерные эмбрионы из ядра соматической клетки человека и яйцеклетки коровы или кролика. Все эти окольные тропы привели в тупики, кроме одной: в июле 2007 г. группе ученых из московского Центра акушерства, гинекологии и перинатологии РАМН и американской корпорации Lifeline Cell Technology удалось вырастить 6 линий полипотентных (способных, как и эмбриональные, превращаться в любые ткани организма) стволовых клеток из неоплодотворенных человеческих яйцеклеток. Достижение впечатляющее, хотя таким методом можно получать культуры терапевтических клеток только для женщин детородного возраста. И, похоже, это направление развиваться не будет: уже в ноябре того же 2007 г. две группы ученых – из Висконсинского и Киотского университета – одновременно объявили о разработке методов получения искусственно индуцированных плюрипотентных стволовых клеток (iPSC) из фибробластов, обычных клеток кожи. Для того, чтобы взрослые клетки «впали в детство», в них пришлось с помощью вирусного носителя ввести работающие копии четырех генов, активных во время эмбрионального развития и заблокированных во взрослом организме. Новую методику уже опробовали во многих лабораториях, а в феврале 2009 человеческие iPSC впервые были использованы для восстановления поврежденного спинного мозга – пока у мышей, но можно надеяться, что через несколько лет дело дойдет до первых клинических исследований на людях.

Возможно, именно эти эксперименты поставят жирную точку на биоэтических спорах, оставив тему партеногенеза авторам фантастических романов, предвещающих появление мира без мужчин. К счастью, пока не похоже, чтобы женщины к такому миру сильно стремились.

Вызвать явление искусственного партеногенеза, т.е. девственного развития яйца без предшествовавшего оплодотворения, удавалось до настоящего времени только у беспозвоночных и у таких яйцекладущих позвоночных, как амфибии.

На млекопитающих подобных опытов никогда не производили, и по весьма простой причине: опыты вызывания искусственного партеногенеза, производившиеся до сих пор, заключались в том, что женское яйцо до оплодотворения извлекалось из яичника и подвергалось ряду физических, химических и механических воздействий, имеющих целью вызвать в нем процесс развития, а затем яйцо возвращалось в естественную среду, в пресную или морскую воду.

... (Рябов Г. А., 1994). Таким образом, синдром представляет собой группу симптомов или симптомокомплексов, которые определяются закономерностями патогенеза , и в основе своей может зависеть от различных этиологических факторов, т. е. синдром, как говорил И. В. Давыдовский (1969), отражая...

Вызвать явление партеногенеза у млекопитающих казалось совершенно невозможным, так как у них развитие яйца протекает в самом материнском организме.

Произвести подобные опыты на млекопитающих можно было бы только одним из двух совершенно различных методов. Во-первых, можно было бы воздействовать на яйцо, вводя в кровь матери те химические вещества, которыми пользуются обычно для вызывания искусственного партеногенеза: жирные кислоты и другие растворители липоидов (жироподобных веществ), а затем гипертонические растворы по методу Жака Леба; или вещества, свертывающие и растворяющие коллоиды по методу Ива Делажа. Но очевидно, что на практике это невозможно, ибо ткани материнского организма подвергались бы разрушению гораздо раньше, чем удалось бы воздействовать на яйцо.

Быть может, позволительно мечтать, что со временем будут открыты активные в этом отношении и притом не изменяющие среду ферменты или же вещества, подобные тем, которые действуют в вакцинах. Но в настоящее время их не существует, и ничто не дает нам пока права предсказывать их появление когда бы то ни было в будущем.

Второй метод, который, казалось бы, возможно применить с целью вызвать искусственный партеногенез, состоит в том, что яйцо должно быть извлечено из материнского яичника, обработано соответствующими реактивами и немедленно возвращено снова в матку. Подобный эксперимент , однако, оказывается невыполнимым при современных условиях техники опытов даже в применении к лабораторным животным. Тем более невыполнимо это по отношению к человеку.

Такое положение вопроса не помешало, однако, некоторым популяризаторам, не особенно тщательно разбиравшимся в вопросе об экспериментальной применимости этого метода, изображать проблему экспериментального партеногенеза как поддающуюся разрешению, если уже не разрешенную, в применении к человеку. В Америке после опытов Леба, во Франции после опытов Делажа периодическая печать подняла большой шум в связи с полученными ими результатами скорее в расчете удовлетворить любопытство наивного читателя, чем в добросовестных поисках истины. О партеногенезе у человека говорилось как о вопросе, разрешение которого не заставит себя долго ждать. Люди осведомленные и способные отнестись критически только пожимали плечами при виде подобных преувеличений, и автор настоящей статьи не представлял в этом отношении исключения.

Но вот ряд новых исследований перенес вопрос на несколько иную, на этот раз уже научную, почву и позволил вновь поставить проблему партеногенеза у человека. Это замечательные исследования, опубликованные за последние годы Оскаром Гертвигом.

Вот сущность исследований Гертвига.

Если подвергнуть кратковременному действию лучей радия сперматозоиды лягушки и тотчас употребить их для оплодотворения яиц, яйца начинают развиваться, но более или менее неправильно, тем сильнее уклоняясь от нормы, чем продолжительнее было действие радия. Однако при дальнейшем усилении действия радия наступает резкий перелом и теперь при увеличении продолжительности действия радия на сперматозоиды все больший и больший процент оплодотворенных ими яиц развивается вполне нормально. Еще более долговременное действие радия останавливает подвижность сперматозоидов и убивает их, вследствие чего оплодотворение яйца становится невозможным.

Этому факту, столь парадоксальному на первый взгляд, Гертвиг дает объяснение, в верности которого можно было бы усомниться, если бы автор не дал экспериментального подтверждения. В том случае, когда сперматозоид лишь в умеренной степени подвергнут действию радия, не только он сохраняет способность проникнуть в яйцо и вызвать его развитие, но даже хроматин сперматозоида сливается с ядерным хроматином яйца; в результате ядро оплодотворенного яйца содержит смешанный хроматин, половина которого подверглась изменениям при действии радия на сперматозоид. Этот измененный и уже ненормальный хроматин не потерял своей способности расти, так что в течение сегментации и дальнейшего деления отцовский хроматин продолжает наряду с материнским, здоровым хроматином множиться во всех клеточках, и вследствие влияния испорченного наполовину ядра на морфологические процессы самые эти процессы оказываются измененными, деформированными, изобилующими аномалиями и уродствами. До известного предела все эти изменения усиливаются пропорционально интенсивности изменений, вызванных радием в хроматине сперматозоида.

Однако если изменения сперматозоида зашли достаточно далеко, то способность роста хроматина прогрессивно падает, так что все меньшие количества измененного хроматина входят в состав ядра оплодотворенного яйца; в результате влияние испорченного радием хроматина на развитие зародыша ослабляется. Если действие радия доведено до того предела, когда подвижность сперматозоида и его оплодотворяющая способность почти исчезают, то исчезает совершенно и способность размножения его хроматина, который уже не принимает никакого участия в дальнейшем образовании клеток зародыша.

Автор этой статьи уже давно обращал внимание биологов на то, что процесс оплодотворения слагается из двух совершенно различных явлений; из толчка к развитию яиц и из амфимиксиса, т.е. слияния ядер, отцовского и материнского. Это различие с тех пор было доказано многочисленными примерами. Среди них примеры, приводимые Гертвигом, наиболее заслуживают внимания. Гертвигу рядом последовательных опытов удалось показать, что при той крайней степени изменения сперматозоида, о которой мы говорили, он проникает в яйцо совершенно нормально, но хроматин его вместо того, чтобы сливаться с хроматином женского ядра, остается бездейственным и наподобие инородного тела удаляется в какой-нибудь угол цитоплазмы в одном из бластомеров, не принимая никакого участия в дроблении яйца. Итак, все клетки зародыша содержат исключительно материнский, совершенно здоровый хроматин, чем и объясняется отсутствие тяжелых аномалий у потомства.

Гертвиг не без оснований рассматривает развитие зародыша при таких условиях как партеногенетическое. Он сравнивает действие сперматозоида в этом случае с механическим повреждением, как в «травматическом» партеногенезе Батальона, который вызывал девственное развитие яйца лягушки, укалывая его иглой.

Но мы не можем удовлетвориться подобным объяснением. Батальон показал, что травматического партеногенеза в чистом виде не существует и в опыте Гертвига нет ничего подобного тому, что было при прививке лимфоцитов яйцу в опытах Батальона.

Но я указывал в той работе, на которую я ссылался выше, что при нормальном оплодотворении толчок к развитию может быть сообщен тем, что у человека сперматозоид во время своего прохождения сквозь цитоплазму яйца разбухает, впитывая воду из этой последней, и обезвоживает ее, что и является толчком к развитию; обезвоживание при искусственном партеногенезе является одним из обычных методов.

В своих исследованиях Гертвиг также констатировал разбухание мужского ядра даже в тех случаях, когда оно подвергалось усиленной иррадиации. И странно, что он не попытался сделать из этого наблюдения естественный вывод.

Но, оставляя в стороне эти несущественные в данном случае частности, остановимся на существенном, в чем мы совершенно согласны с О.Гертвигом, а именно на том, что подвергшийся значительному изменению сперматозоид может обусловить партеногенетическое развитие, которое можно констатировать по тому признаку, что плод не обнаруживает следов вредного действия радия на вызвавший развитие яйца сперматозоид. Гертвиг констатировал аналогичные явления при действии на сперматозоид метиленовой синьки.

Из этих весьма интересных наблюдений Гертвига я и беру на себя смелость сделать некоторые выводы.

То, что Гертвиг доказал для действия радия и метиленовой синьки, должно без сомнения оказаться верным и для целого ряда ядов. Теперь уже намечается путь, приводящий нас к признанию возможности партеногенеза у человека.

Человек добровольно или против воли часто поглощает яды, действие которых отражается как на половых элементах, так и на зародыше, из них возникающем. В первую очередь назовем алкоголь, затем морфин, кокаин, быть может — никотин, затем сифилитический яд и многие другие. И вовсе не было бы абсурдом предположить, что то, что имеет место у лягушек в опытах Гертвига, происходит при естественных условиях и у человека.

Для ясности возьмем пример алкоголя. Сперматозоид, в умеренной степени затронутый этим ядом, поддается слиянию с яйцом, влияет на состав клеток зародыша и определяет более или менее значительные искажения. Сперматозоид же, глубоко измененный этим же самым ядом, уже не способен к амфимиксису и вызывает лишь партеногенетическое развитие наподобие всякого другого фактора, способного вызвать такое же развитие.

Как и у лягушки, это можно заметить по тому, что потомство, хотя, быть может, и слабое и меньшей величины, чем вполне нормальное, не обладает однако пороками отца и вообще совершенно лишено наследственных свойств по отцовской линии.

В своих дальнейших опытах О. Гертвиг показывает, что радий производил такое же действие на яйца, как и на сперматозоиды.

В случае, когда яйцо подвергнуто действию радия и оплодотворение произведено вполне здоровым сперматозоидом, то, что выше говорилось о роли сперматозоида, теперь приходится отнести к яйцу. При приближении к пределу, когда ядро яйца настолько сильно изменено, что неспособно уже принимать никакого участия в дальнейшем развитии, ядерный аппарат развивающегося зародыша образуется только ядром сперматозоида: здесь мы имеем дело с мужским партеногенезом.

Термин этот до известной степени подходит для описываемого явления, однако следует отметить одно существенное отличие между мужским и женским партеногенезом. При женском партеногенезе не только ядерный аппарат, но и цитоплазма зародыша принадлежит одному из производителей, а именно — матери, тогда как при мужском партеногенезе ядерный аппарат зародыша развивается из отцовского ядра, а цитоплазма всех клеток —материнского происхождения. А между тем вовсе не доказано, вопреки утверждениям некоторых авторов, и в том числе О. Гертвига, что цитоплазма не играет роли в передаче наследственных черт.

Итак, возможно, что среди людей существуют партеногенетические особи, продукты мужского или женского партеногенеза; мы постоянно встречаемся с ними, но у нас не возникает и сомнения относительно особенностей их происхождения, так как эти особенности не выражены в каких либо необычайных и необъяснимых свойствах этих особей.

Необходимо тщательное наблюдение случаев, которые кажутся партеногенетическими, чтобы составить определенное мнение на этот счет. Эта в высшей степени интересная работа должна была бы увлечь биологов, и прежде всего врачей, которые часто пользуют данную семью в течение ряда поколений и знают патологическую историю всех ее членов. Мы надеемся, что среди них найдутся интересующиеся вопросом, и когда-нибудь их наблюдения удостоверят, подтверждается ли или нет высказываемое нами предположение.

Но вопрос имеет еще одну сторону. Явления, аналогичные тем, что наблюдались у зародышей лягушки в опытах Гертвига, встречаются также и при скрещивании помесей. Если яйцо оплодотворено сперматозоидом не того же вида, но и не слишком разнящегося, то получается потомство, не обладающее никакими недостатками помимо того, что оно неспособно уже к скрещиванию. Попытки оплодотворения яиц спермой весьма отдаленного вида остаются обыкновенно безрезультатными. Но в некоторых, весьма редких, впрочем, случаях удалось получить (Купельвизеру в 1906, 1909, 1912 гг.; Лебу в 1908 г.) плод нормальный, и притом материнского вида. Эти явления совершенно правильно определялись как партеногенетические ввиду отсутствия процессов амфимиксиса при оплодотворении.

Это объяснение подтверждается опытами Герт вига с подвергшейся сильному действию радия спермой, а эти опыты, в свою очередь, могли бы опираться на более ранние опыты Купельвизера и Леба.

Итак, сводя воедино все сказанное, можно сделать общее заключение, что несоответствие между отцовским и материнским хроматином может обусловливать явление партеногенеза, причем это несоответствие может зависеть или от патологических изменений хроматина, или же от значительного видового различия. Отсюда опять-таки можно сделать вывод о второй возможности партеногенеза у человека.

Все согласны в том отношении, что все расы рода человеческого способны к взаимному скрещиванию, однако необходимы некоторые ограничения этого взгляда в смысле бесплодия или пониженной плодовитости при скрещивании некоторых весьма отдаленных рас (Брока, Дарвин). Весьма возможно, что в наиболее резких случаях этого рода несоответствие между отцовским и материнским хроматином становится столь значительным, что способно исключить возможность амфимиксиса и обусловить партеногенез. Необходимы исследования, чтобы проверить справедливость этих заключений или по крайней мере подтвердить правильность основных посылок. Быть может, это должно было бы быть сделано нами, но мы предоставляем это специалистам; мы не берем на себя смелости решать проблему, а только ставим ее.

Для полноты следует еще несколько остановиться на в высшей степени редких, но все же известных случаях полового общения между особями рода человеческого того и другого пола и животными. Видовое различие тут немного меньше, нежели между иглокожими и моллюсками, скрещивание которых дало положительные результаты у Купельвизера и Леба. Но постановка опытов и даже простого обследования тут была бы весьма затруднительна.

Итак, не разрешив ни одного из поставленных вопросов, нам, как нам кажется, удалось показать, какой большой интерес для врачей и ветеринаров, а также ботаников и садоводов представляет исследование с этой точки зрения фактов, не привлекших к себе должного внимания лишь потому, что о них мало знают. Необходимо самым тщательным образом исследовать те случаи скрещивания, когда расхождение признаков проявляется в первом поколении, в противоречии с законом Менделя.

Быть может, весь вопрос об односторонней наследственности должен быть освещен с этой точки зрения («Biologica»).

Рождество Иисуса Христа было так: по обручении Матери Его Марии с Иоси­фом, прежде нежели сочетались они, оказалось что Она имеет во чреве от Духа Святого…

Евангелие от Матфея

Дальнейший ход событий всем, кто читал Библию, известен: Иосиф, « не желая огласить Ее», хотел тайно отпу­стить Марию, но ночью ему явился Ангел Господень и объяснил происхо­ждение беременности. Житейская дра­матическая коллизия получила на этот раз необыкновенную развязку: родился Бог и одновременно сын чело­веческий - видимый, доступный для общения. Тайна беспорочного зачатия была отнесена к Великом таинствам, но не переставала волновать умы.

В начале 30-х годов нашего века выдающийся немецкий зоолог Карл Зибольд открыл явление партеноге­неза - развитие яйцеклетки без опло­дотворения - у некоторых насекомых. Это открытие вызвало огромный инте­рес не только ученых: казалось, что « Великое таинство» может получить вполне научное объяснение. В поздравлении архиепископа Германии Зибольду были такие слова: « Теперь и для Девы Марии можно объяснить тот же процесс…»

Принцип зарождения человеческой жизни до удивления прост: чтобы запу­стить механизм безостановочного раз­множения клеток, нужно всего лишь слить воедино женскую и мужскую половые клетки. Как в любви слива­ются ОН и ОНА, так и половые клетки, отдав по половине наследственного материала (по 23 хромосомы), созда­дут ОНО с 46 хромосомами. Но эти 46 хромосом можно получить, и не сливая в любви противоположные половые клетки. Можно соединить в одно целое две женские яйцеклетки или два спер­матозоида. Правда, в этих комбина­циях уже родится не ОНО, это будут лишь точные копии или мам, или пап.

Открытие Зибольда пробудило интерес к этой теме у многих ученых. Такие великие умы, как Альберт Эйнш­тейн и Лео Сцилард, Норберт Винер и Роналд Фишер внесли свой вклад в популяционную генетику - науку о прохождении и закреплении наслед­ственного материала в пределах целых сообществ.

Тем временем исследователи от­крывали новые случаи партеногенеза, а практики использовали эти открытия для хозяйственных нужд. В 1958 году Илья Даревский сообщает о фактах партеногенеза у некоторых видов яще­риц (а ведь это позвоночные!). В это же время академик Б. Л. Астауров выво­дит совершенно новый вид шелкопря­да, состоящий в основном из сам­цов (до сих пор этот вид шелкопряда носит его имя и разводится во всех шелконосных районах мира). В данном случае партеногенез принес ощутимую пользу: самки шелкопряда не только дают шелк низкого качества, но и более прожорливы, чем самцы (при том, что корм - шелковица - очень дорогой).

Методика Астаурова чрезвычайно проста: гусеницы прокручиваются в центрифуге со скоростью 3000 оборо­тов в минуту при заданных температу­ре, давлении и прочих условиях в тече­ние 2 минут. Под влиянием центробеж­ных сил сперматозоиды сливаются, давая начало чисто мужскому виду. Точно так же можно получать преиму­щественно особей женского пола.

Представьте себе, сколько важных хозяйственных задач можно было бы решить с помощью партеногенеза. Почему бы, например, не « тиражиро­вать» самых молочных коров? От одной коровы удалось бы получить столько же телочек, сколько от стада в 500 голов! И все они были бы точ­ными копиями мамы - никаких отсту­плений от « оригинала». Все это можно было бы считать чистой фантастикой, если бы природа сама не прибегала к партеногенезу.

В феврале в английской телепередаче о животных рассказыва­лось о гиенах, их образе жизни, повад­ках. И вдруг голос диктора поясняет: « Среди гиен встречаются гермафроди­ты, а кроме того, известны случаи партеногенетического размножения гиен»..

Как известно, в природе предусмо­трены три способа размножения всего живого (растений и животных): беспо­лое, гермафродитное и раздельнопо­лое. Конечно, самый простой способ - бесполый. У амеб, например, масса « мамы» делится на двух « дочек» (или двух « сынков» - как вам больше нра­вится), и каждое последующее деле­ние, по существу, - уход « мамы» в вечность, в бессмертие. Четыре хромо­сомы повторяются миллиарды лет. Нет никакой борьбы ни за совершен­ствование, ни за существование. Если вдруг пересохнут все лужи - амебы исчезнут.

Второй весьма распространенный способ размножения - гермафродитный: самка и самец в одном лице. Количество возможных комбинаций « встреч» между полами огромно - в два раза больше, чем при полном раз­делении полов. Преимущества над бесполым способом очевидны. Но при­рода идет по иному пути. Повсеместно, даже в мире растений наблюдается третий, универсальный способ размно­жения, основанный на полном разде­лении полов. Конечно, количество воз­можных встреч по сравнению с гер-мафродитным способом вдвое меньше, но зато какие это встречи!

ОН, осваивая внешнюю среду, является не чем иным, как средством в эволюционном совершенствовании вида. А цель - ОНА. Опыт борьбы за существование ОН передает ЕЙ для того, чтобы эти уроки были усвоены наследниками. ОН мобилен, операти­вен, ОНА консервативна, живет во вчерашнем дне. ОНА - это ОН вче­рашний, а ОН - это ОНА завтрашняя. Разница между э^ими двумя « днями» равна жизни одного поколения, то есть 60-80 годам. Через 60-80 лет жен- щины догонят мужчин сегодняшнего дня в росте, спортивных достижениях, привычках, даже болезнях… Таковы условия, которые нам навязаны поло­вой дифференциацией в целях беспре­станного совершенствования: ОН - ведущий, ОНА - ведомая. И психоло­гия полов обусловлена этими эволю­ционными требованиями.

От НЕЕ не нужно ждать великих изобретений и открытий. Инстинкт материнства у НЕЕ всегда сильнее любознательности. Однако ОНА неза­менима в скрупулезной, точной, « мел­кой» работе. ОНА не глупее, не слабее и вообще не хуже его - у НЕЕ просто иные исторические задачи.

Борьба за равноправие полов наду­манна и несостоятельна. Если обще­ство хочет спокойного, консервативно­го, не связанного с риском правления, но без продвижения вперед - нужны лидеры-женщины. Если же требуется поиск, натиск, готовность к риску - нужны мужчины.

Итак, мужчины - оперативная память, женщины - консервативное ядро, накопитель, посредник для пере­дачи накопленного детям. Таково рас­пределение ролей не только в челове­ческом сообществе. Равновесность этой системы необходима для продол­жения рода. И природа всегда вырав­нивает ее.

Представьте себе такую ситуацию. В фермерском хозяйстве родилось больше петухов или бычков, чем это кажется необходимым фермеру. Ему бы побольше курочек (будущие яйца), коров (молоко). Однако чем больше фермер будет забивать петушков и бычков, тем больше их будет рождать­ся. Так система полов отвечает на нарушение равновесия. В аквариуме с одним самцом обычно рождаются пре­имущественно самцы, и наоборот. Давно подмечено: чем больше на войне погибнет мужчин, тем больше рождается мальчиков.

Есть и такая закономерность: чем моложе самец или самка, тем вероят­нее, что у них родится сын. Старение сопровождается скатыванием пары в консерватизм, а ЕМУ это не свойствен­но.

Вот такие закономерности открыла популяционная генетика - наука, воз­никшая на стыке генетики, информа­тики и кибернетики.

Итак, раздельнополый способ раз­множения открывает уникальные воз­можности для совершенствования человека, где у каждого пола свои обя­занности по отношению друг к другу и потомству.

А что если бы человек мог продол­жать род при помощи партеногенеза - зачатия без оплодотворения? Количе­ство яйцеклеток у каждой женщины - 4-5 тысяч. Созревает же каждый месяц лишь одна. Значит, за 30 лет (с 15 до 45) готовы к оплодотворению 300-400 яйцеклеток, плод из которых может быть выношен максимально 25-30 раз. Выходит, из 4-5 тысяч возможностей реализуется не более 25-30 (да и то, конечно, лишь при тео­ретическом подходе к вопросу). Не слишком ли нерационально?

Если бы у людей был возможен партеногенез, эта цифра увеличилась бы в 100 раз. У каждой мамы могло бы быть по 2-2,5 тысячи совершенно одинаковых, как две капли на нее по­хожих дочек. Но нужно ли это? Слу­жит ли такое копирование эволюции человека?

Вряд ли человеческое сообщество украсили бы ряды близнецов, да еще при резком возрастании общего числа людей. Путь совершенствования у человека другой.

В Ветхом Завете пророк Екклизиаст так определяет суть взаимоотно­шений полов: « Двоим лучше, чем од­ному… Ибо если упадет один - дру­гой поднимет… Также, если лежат двое, то теплее им; а одному как обо­греться?»

Две хромосомы, ОН и ОНА - сим­волы любви, жизни и продолжения рода. Двое, и только двое, могут урав­новесить любую систему, находящую­ся в постоянном движении и в полной взаимозависимости.

Что же касается непорочного зача­тия, с которого мы начали этот разго­вор, то я бы предпочел избегать кате­горичности в обсуждении этой темы. В медицине описаны достоверные слу­чаи (далеко не единичные), когда дев­ственниц оперировали по поводу пред­полагаемого аппендицита, а находили внематочную беременность. Я знаком с подобным случаем, произошедшим с пятнадцатилетней лыжницей во время соревнований. Именно спортивные соревнования, танцы обычно провоци­руют такие резкие боли внизу живота, принимаемые за аппендицит. Если это происходит примерно на 8-12-й день менструального цикла (то есть в период овуляции - миграции яйце­клетки), то, как это ни удивительно для всех нас, я бы не исключал воз­можность партеногенеза. Вспомните опыты Астаурова: две половые клетки под влиянием центробежных сил сли­ваются, давая начало новой жизни.

Известен ли хоть один конкретный результат партеногенеза у человека? Достоверных данных нет. Великое Таинство непорочного зачатия, как будто бы подтверждающее возмож­ность рождения без оплодотворения, обескураживает своим результатом: ведь согласно концепции партеноге­неза у Девы Марии не мог родиться мальчик! Однако не будем торопиться с выводами и на этот раз. Популяцион­ная генетика раскрыла немало тайн и, в свою очередь, обнаружила новые загадки, на которые ей предстоит искать ответы.

Александр Унфанген