Вода как растворитель различных веществ. Конспект занятия «Вода — растворитель

Сегодня мы поговорим о веществе – воде!


А видел ли кто-нибудь из вас воду?

Вопрос показался вам нелепым? Но он относится к совершенно чистой воде, в которой нет никаких примесей. Если быть честным и точным в ответе, то придется сознаться, что такую воду ни я, ни вы пока не видели. Именно поэтому на стакане с водой после надписи «Н 2 О» стоит знак вопроса. Значит, в стакане не чистая вода, а что тогда?

В этой воде растворены газы: N 2 , O 2 , CO 2 , Ar, соли из почвы, катионы железа из водопроводных труб. Кроме того, в ней взвешены мельчайшие частицы пыли. Вот что мы называем ч и с т о й в о д о й! Много ученых работает над решением трудной проблемы – получить абсолютно чистую воду. Но пока получить такую ультрачистую воду не удалось. Однако вы можете возразить, что есть дистиллированная вода. Кстати, что она собой представляет?

На самом деле мы получаем такую воду, когда стерилизуем банки перед консервированием. Переворачиваем банку вверх дном, помещаем ее над кипящей водой. На донышке банки появляются капельки, это и есть дистиллированная вода. Но как только мы перевернем банку, в нее заходят газы из воздуха, и снова в банке – раствор. Поэтому грамотные хозяйки стараются сразу после стерилизации заполнить банки нужным содержимым. Говорят, что продукты в этом случае будут храниться дольше. Возможно, они правы. Можете поэкспериментировать! Именно потому, что вода способна растворять в себе различные вещества, ученые не могут до сих пор получить идеально чистую воду в больших объемах. А она бы так пригодилась, например, в медицине для приготовления лекарств.

Кстати, находясь в стакане, вода «растворяет» стекло. Поэтому чем толще стекло, тем дольше прослужат стаканы. А что такое морская вода?

Это раствор, в котором содержится много веществ. Например, поваренная соль. А как можно выделить поваренную соль из морской воды?

Выпариванием.Кстати, именно так поступали наши предки. В Онеге были солеварни, где из морской воды выпаривали соль. Соль продавали новгородским купцам, покупали своим невестам и женам дорогие украшения, шикарные ткани. Таких нарядов, как у поморок, не было даже у московских модниц. А все лишь благодаря знаниям свойств растворов! Итак, сегодня мы с вами говорим о растворах и растворимости. Запишем в тетради определение раствора.

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Раccмотрим схемы 1–2 и разберем, какие бывают растворы.


Какой из растворов вы предпочтете, готовя суп? Почему?

Определите, где разбавленный раствор, где концентрированный раствор медного купороса?

Если в определённом объёме раствора содержится мало растворённого вещества, то такой раствор называют разбавленным , если много – концентрированным .





Определите, где какой раствор?

Не следует смешивать понятия «насыщенный» и «концентрированный» раствор, «ненасыщенный» и «разбавленный» раствор.

Одни вещества хорошо растворяются в воде, другие мало, а третьи – не растворяются совсем. Посмотрите видео "РАСТВОРИМОСТЬ ТВЁРДЫХ ВЕЩЕСТВ В ВОДЕ"

Выполните задание в тетради: Распределите предложенные вещества - СO 2 , H 2 , O 2 , H 2 SO 4 , Уксус, NaCl,Мел, Ржавчина, Растительное масло, Спирт в пустые столбики таблицы 1, используя свой жизненный опыт.

Таблица 1

Растворенное
вещество

Примеры веществ

Растворимые

Малорастворимые

Газ



Жидкость



Твердое вещество



А можете ли вы сказать о растворимости FeSO 4 ?

Как же быть?

Для того чтобы определить растворимость веществ в воде, мы будем пользоваться таблицей растворимости солей, кислот и оснований в воде. Она находится в приложениях к уроку.

В верхней строке таблицы – катионы, в левом столбце – анионы; ищем точку пересечения, смотрим букву – это и есть растворимость.

Определим растворимость солей: AgNO 3 , AgCl, CaSO 4 .

Растворимость увеличивается с ростом температуры (бывают исключения). Вы прекрасно знаете, что удобнее и быстрее растворять сахар в горячей, а не в холодной воде. Посмотрите "Тепловые явления при растворении"

Попробуйте сами, пользуясь таблицей, определить растворимость веществ.

Задание. Определить растворимость следующих веществ: AgNO 3 , Fe(OH) 2 , Ag 2 SO 3 , Ca(OH) 2 , CaCO 3 , MgCO 3 , KOH.

ОПРЕДЕЛЕНИЯ по теме «Растворы»

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Насыщенный раствор – это раствор, в котором данное вещество при данной температуре больше не растворяется.

Ненасыщенный раствор - это раствор, в котором при данной температуре вещество ещё может растворяться.

Суспензией называют взвесь, в которой мелкие частицы твёрдого вещества равномерно распределены между молекулами воды.

Эмульсией называют взвесь, в которой мелкие капельки какой-либо жидкости распределены между молекулами другой жидкости.

Разбавленные растворы - растворы с небольшим содержанием растворенного вещества.

Концентрированные растворы - растворы с большим содержанием растворенного вещества.

ДОПОЛНИТЕЛЬНО:

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные . По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные .

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным , а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным .

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) - величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным . Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.





































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: изучение свойств воды.

Задачи урока: дать представление о воде как растворителе, о растворимых и нерастворимых веществах; познакомить с понятием «фильтр», с простейшими способами определения растворимых и нерастворимых веществ; подготовить доклад на тему «Вода – растворитель».

Оборудование и наглядные пособия: учебники, хрестоматии, тетради для самостоятельной работы; наборы: стаканы пустые и с кипяченой водой; коробочки с поваренной солью, сахаром, речным песком, глиной; чайные ложки, воронки, фильтры из бумажных салфеток; гуашь (акварельные краски), кисти и листы для рефлексии; презентация, выполненная в Power Point, мультимедийный проектор, экран.

ХОД УРОКА

I. Организационный момент

У. Всем доброе утро! (Слайд 1)
Приглашаю вас на третье заседание школьного научного клуба «Мы и окружающий мир».

II. Сообщение темы и цели урока

Учитель. Сегодня у нас гости, учителя из других школ, которые пришли на заседание клуба. Предлагаю председателю клуба, Порошиной Анастасии, открыть заседание.

Председатель. Мы сегодня собрались на заседание клуба по теме «Вода – растворитель». Задание всем присутствующим: подготовить доклад на тему «Вода – растворитель». На этом уроке вам вновь предстоит стать исследователями свойств воды. Изучать эти свойства вы будете в своих лабораториях, с помощью «консультантов» – Макаренкова Михаила, Старковой Олеси и Стениной Юлии. Каждая лаборатория должна будет выполнить следующее задание: провести опыты и наблюдения, а в конце заседания обсудить план сообщения «Вода – растворитель».

III. Изучение нового материала

У. С разрешения председателя я хочу сделать первое сообщение. (Слайд 2) Такое же заседание по теме «Вода – растворитель» недавно провели ученики села Мирного. Открыл заседание Костя Погодин, который напомнил всем присутствующим еще об одном удивительном свойстве воды: многие вещества в воде могут распадаться на невидимые мельчайшие частицы, то есть растворяться. Следовательно, для многих веществ вода – хороший растворитель. После этого Маша предложила провести опыты и выявить способы, с помощью которых можно будет получить ответ на вопрос, растворяется вещество в воде или нет.
У. Предлагаю вам на заседании клуба определить растворимость в воде таких веществ, как поваренная соль, сахар, речной песок и глина.
Давайте предположим, какое вещество, по вашему мнению, растворится в воде, а какое не растворится. Выскажите свои предположения, догадки и продолжите высказывание: (Слайд 3)

У. Подумаем вместе, какие гипотезы будем подтверждать. (Слайд 3)
Предположим … (соль растворится в воде)
Допустим … (сахар растворится в воде)
Возможно … (песок не растворится в воде)
Что, если … (глина не растворится в воде)
У. Давайте, и мы проведем опыты, которые помогут нам в этом разобраться. Перед работой председатель напомнит вам правила при проведении опытов и раздаст карточки, на которых эти правила напечатаны. (Слайд 4)
П. Посмотрите на экран, где записаны правила.

«Правила при проведении опытов»

  1. Необходимо бережно относиться ко всем приборам. Их можно не только разбить, ими можно и пораниться.
  2. Во время работы можно не только сидеть, но и стоять.
  3. Опыт проводит один из учеников (докладчик), остальные молча наблюдают или по просьбе докладчика помогают ему.
  4. Обмен мнениями по результатам проведенного опыта начинается только после того, как докладчик разрешает его начать.
  5. Переговариваться друг с другом нужно тихо, не мешая остальным.
  6. Подходить к столу и проводить замену лабораторного оборудования можно только по разрешению председателя.

IV. Практическая работа

У. Предлагаю председателю выбрать «консультанта», который прочитает вслух из учебника (с.85) порядок действий при проведении первого опыта. (Слайд 5)

1) П. Проведите опыт с поваренной солью . Проверьте, растворяется ли в воде поваренная соль.
«Консультант» из каждой лаборатории берет один из подготовленных наборов, и проводит опыт с поваренной солью. В прозрачный стакан наливает кипяченую воду. Всыпает в воду небольшое количество поваренной соли. Группа наблюдает, что происходит с кристалликами соли, и исследует воду на вкус.
Председатель (как в игре КВН) зачитывает один и тот же вопрос каждой группе, а представители от лабораторий отвечают на них.
П. (Слайд 6) Изменилась ли прозрачность воды? (Прозрачность не изменилась)
Изменился ли цвет воды? (Цвет не изменился)
Изменился ли вкус воды? (Вода стала соленой)
Можно ли сказать, что соль исчезла? (Да, она растворилась, исчезла, ее не видно)
У. Сделайте вывод. (Соль растворилась) (Слайд 6)

П. Прошу всех приступить к выполнению второго опыта, для которого необходимо использовать фильтры.
У. Что такое фильтр? (Прибор, устройство или сооружение для очищения жидкостей, газов от твёрдых частиц, примесей.) (Слайд 7)
У. Прочитайте вслух порядок действий при выполнении опыта с фильтром. (Слайд 8)
Учащиеся пропускают воду с солью через фильтр, наблюдают и исследуют воду на вкус.
П. (Слайд 9) Осталась ли соль на фильтре? (На фильтре пищевая соль не осталась)
Изменился ли вкус воды? (Вкус воды не изменился)
Удалось ли очистить воду от соли? (Пищевая соль прошла с водой через фильтр)
У. Сделайте вывод из своих наблюдений. (Соль растворилась в воде) (Слайд 9)
У. Подтвердилась ли ваша гипотеза?
У. Все правильно! Молодцы!
У. Результаты опыта оформите письменно в Тетради для самостоятельной работы (с. 30). (Слайд 10)

2) П. (Слайд 11) Проделаем такой же опыт еще раз, только вместо соли положим чайную ложку сахарного песка .
«Консультант» из каждой лаборатории берет второй набор и проводит опыт с сахаром. В прозрачный стакан наливает кипяченую воду. Всыпает в воду небольшое количество сахара. Группа наблюдает, что происходит и исследует воду на вкус.
П. (Слайд 12) Изменилась ли прозрачность воды? (Прозрачность воды не изменилась)
Изменился ли цвет воды? (Цвет воды не изменился)
Изменился ли вкус воды? (Вода стала сладкой)
Можно ли сказать, что сахар исчез? (Сахар стал невидимым в воде, вода его растворила)
У. Сделайте вывод. (Сахар растворился) (Слайд 12)

У. Пропустите воду с сахаром через бумажный фильтр. (Слайд 13)
Учащиеся пропускают воду с сахаром через фильтр, наблюдают и исследуют воду на вкус.
П. (Слайд 14) Остался ли сахар на фильтре? (На фильтре сахара не видно)
Изменился ли вкус воды? (Вкус воды не изменился)
Удалось ли очистить воду от сахара? (Воду от сахара очистить не удалось, вместе с водой он прошел через фильтр)
У. Сделайте вывод. (Сахар растворился в воде) (Слайд 14)
У. Подтвердилась ли гипотеза?
У. Верно. Молодцы!
У. Результаты опыта оформите письменно в Тетради для самостоятельной работы. (Слайд 15)

3) П. (Слайд 16)Проверим утверждения и проведем опыт с речным песком .
У. Прочитайте в учебнике порядок действий при проведении опыта.
Проводят опыт с речным песком. Размешивают в стакане с водой чайную ложку речного песка. Дают смеси отстояться. Наблюдают, что происходит с песчинками и водой.
П. (Слайд 17) Изменилась ли прозрачность воды? (Вода стала мутной, грязной)
Изменился ли цвет воды? (Цвет воды изменился)
Исчезли ли песчинки? (Более тяжелые песчинки опускаются на дно, а мелкие плавают в воде, делая ее мутной)
У. Сделайте вывод. (Песок не растворился) (Слайд 17)

У. (Слайд 18) Пропустите содержимое стакана через бумажный фильтр.
Учащиеся пропускают воду с сахаром через фильтр, наблюдают.
П. (Слайд 19) Что проходит через фильтр, а что остается на нем? (Вода проходит через фильтр, а речной песок остался на фильтре и песчинки хорошо видны)
Очистилась ли вода от песка? (Фильтр помогает очистить воду от частиц, которые в ней не растворяются)
У. Сделайте вывод. (Речной песок в воде не растворился) (Слайд 19)
У. Верным ли было ваше предположение о растворимости песка в воде?
У. Отлично! Молодцы!
У. Результаты опыта оформите письменно в Тетради для самостоятельной работы. (Слайд 20)

4) П. (Слайд 21) Проделайте такой же опыт с кусочком глины.
Проводят опыт с глиной. Размешивают в стакане с водой кусочек глины. Дают смеси отстояться. Наблюдают, что происходит с глиной и водой.
П. (Слайд 22) Изменилась ли прозрачность воды? (Вода стала мутной)
Изменился ли цвет воды? (Да)
Исчезли ли частицы глины? (Более тяжелые частицы опускаются на дно, а мелкие плавают в воде, делая ее мутной)
У. Сделайте вывод. (Глина не растворилась в воде) (Слайд 22)

У. (Слайд 23) Пропустите содержимое стакана через бумажный фильтр.
П. (Слайд 24)Что проходит через фильтр, а что остается на нем? (Вода проходит через фильтр, а не растворившиеся частицы остаются на фильтре.)
Очистилась ли вода от глины? (Фильтр помог очистить воду от частиц, которые не растворились в воде)
У. Сделайте вывод. (Глина не растворяется в воде) (Слайд 24)
У. Гипотеза подтвердилась?
У. Молодцы! Все правильно!

У. Прошу одного из членов группы зачитать выводы, записанные в тетради, всем присутствующим.
У. Есть ли у кого-нибудь дополнения, уточнения?
У. Сделаем выводы из опытов. (Слайд 25)
Все ли вещества растворяются в воде? (Соль, сахарный песок растворились в воде, а песок и глина не растворились.)
Всегда ли с помощью фильтра можно выявить, растворяется вещество в воде или нет? (Растворившиеся в воде вещества проходят через фильтр вместе с водой, а не растворившиеся частицы остаются на фильтре)

У. Прочитайте о растворимости веществ в воде в учебнике (с.87).

У. Сделайте вывод о свойстве воды как растворителя. (Вода – растворитель, но не все вещества в ней растворяются) (Слайд 25)

У. Советую членам клуба прочитать рассказ в хрестоматии «Вода – растворитель» (с.46). (Слайд 26)
Почему же ученым пока не удалось получить абсолютно чистую воду? (Потому что в воде растворены сотни, а может и тысячи разных веществ)

У. Как люди используют свойство воды растворять некоторые вещества?
(Слайд 27) Безвкусная вода становится сладкой или соленой благодаря сахару или соли, так как вода растворяет и приобретает их вкус. Это свойство человек использует, когда готовит пищу: заваривает чай, варит компот, супы, солит и консервирует овощи, заготавливает варенье.
(Слайд 28) Когда мы моем руки, умываемся или купаемся, когда стираем одежду, то используем жидкую воду и ее свойство – растворителя.
(Слайд 29) В воде также растворяются газы, в частности кислород. Благодаря этому в реках, озерах, морях живут рыбы и другие. Соприкасаясь с воздухом, вода растворяет кислород, углекислый газ и другие газы, которые находятся в нем. Для живых организмов, обитающих в воде, например, рыб, очень важен кислород, растворенный в воде. Он им нужен для дыхания. Если бы кислород не растворялся в воде, то водоемы были бы безжизненными. Зная это, люди не забывают насыщать кислородом воду в аквариуме, где живут рыбки, или прорубают зимой проруби в водоемах для улучшения жизни подо льдом.
(Слайд 30) Когда рисуем акварельными красками или гуашью.

У. Обратите внимание на задание, записанное на доске. (Слайд 31) Предлагаю составить коллективный план выступления на тему «Вода – растворитель». Обсудите его в своих лабораториях.
Заслушивание планов по теме «Вода – растворитель», составленных учащимися.
У. Давайте все вместе сформулируем план выступления. (Слайд 31)

Примерный план выступления по теме «Вода – растворитель»

  1. Введение.
  2. Растворение веществ в воде.
  3. Выводы.
  4. Использование людьми свойства воды растворять некоторые вещества.

Экскурсия в «Выставочный зал». (Слайд 32)

У. При подготовке сообщения вы можете использовать дополнительную литературу, подобранную ребятами, помощниками докладчиков по теме нашего заседания. (Обратить внимание учащихся на выставку книг, интернет – страничек)

V. Итог урока

Какое свойство воды исследовали на заседании клуба? (Свойство воды как растворителя)
К какому выводу мы пришли, исследовав это свойство воды? (Вода – хороший растворитель для некоторых веществ.)
Как вы думаете, трудно быть исследователями?
Что показалось наиболее сложным, интересным?
Пригодятся ли вам знания, приобретенные в ходе исследования этого свойства воды в дальнейшей жизни? (Слайд 33) (Очень важно помнить о том, что вода – растворитель. Вода растворяет соли, среди которых есть как полезные для человека, так и вредные. Поэтому пить воду из источника, если вы не знаете, чист ли он, нельзя. Не зря в народе есть пословица: «Не всякая водица для питья годится».)

VI. Рефлексия

Как мы используем свойство воды растворять некоторые вещества на уроках изобразительного искусства? (Когда рисуем акварельными красками или гуашью)
Предлагаю вам, используя это свойство воды, раскрасить воду в стакане в такой цвет, который наиболее полно соответствует вашему настроению. (Слайд 34)
«Желтый цвет» – радостное, светлое, хорошее настроение.
«Зеленый цвет» – спокойное, уравновешенное.
«Синий цвет» – грустное, печальное, тоскливое настроение.
Покажите свои листы с раскрашенной водой в стакане.

VII. Оценивание

Благодарю председателя, «консультантов» и всех участников заседания за активную работу.

VIII. Домашнее задание

Вода – самое важное химическое соединение на Земле. Вода главный компонент всех живых организмов и той среды, в которой живёт и существует человек. Физические свойства воды резко отличаются от свойств других веществ, и характер этих различий определяет природу физического и биологического мира.

С течением времени жи вые организмы эволюционировали, что позволило им покинуть водную среду и перейти на сушу и подняться в воздух. Они приобрели эту спо собность, сохранив в своих организмах водный раствор в виде жидкой, составляющей ткани, плазмы крови и межклеточных жидкостей, содер жащих необходимый запас ионов и молекул.

Вода в отличие от органических растворителей хорошо растворяет соли, так как она обладает очень высокой диэлектрической проницаемостью (примерно 81 при комнатной температуре) и ее молекулы имеют тенденцию соединяться с ионами с обра зованием гидратированных ионов . Оба эти свойства обусловлены боль шим электрическим дипольным моментом 1 молекулы воды. И это свойство воды играет большую роль в развитии жизни и обмене веществ.

В воде происходит следующий процесс. Сила притяжения или отталкивания электрических зарядов обратно пропорциональна диэлектрической проницаемости среды, окружаю щей данные заряды. Это значит, что два противоположных электриче ских заряда взаимно притягиваются в воде с силой, равной 1/80 силы их взаимного притяжения в воздухе (или в вакууме). Поэтому, если кристалл соли хлорида натрия находится в воде, то образующие его ионы отделяются от кристалла значительно легче, чем если бы кристалл на ходился на воздухе, поскольку электростатическая сила, притягивающая ион обратно к поверхности кристалла из водного раствора, составляет лишь 1/80 силы притяжения данного иона из воздуха. Поэтому не удивительно, что при комнатной температуре тепловое движение не может вызвать переход ионов из кристалла в воздух, но в то же время тепло вого движения ионов вполне достаточно для преодоления относительно-слабого притяжения, когда кристалл окружен водой, что и приводит к переходу большого числа ионов в водный раствор.

Гидратация иона

При растворении солей в воде образуются гидратированные ионы . Образование гидратированных ионов приводит к стабилизации ионов в растворах воды. Каждый отрицательный ион притягивает положительные концы нескольких ближайших молекул воды и стремится удержать их около себя.

Положительные ионы, которые обычно меньше анионов, притягивают воду еще сильнее; каждый катион притягивает отрицательные концы молекул воды и прочно связывает несколько молекул, удерживая их около себя; при этом образуется гидрат, кото рый может быть весьма устойчивым, особенно в случае катионов, несу щих двойной или тройной положительный заряд.

Число молекул воды, присоединенных к данному катиону, его лигандность, определяется размерами катиона. Лигандность атома равна числу атомов, связанных с ним или находящихся с ним в контакте. Лигандность также называется координационным числом .

В воде небольшой катион Ве 2 + образует тетрагидрат Be(OH 2) 4 2+ . Несколько большие ионы, например Mg 2+ или Аl 3+ , образуют гексагидраты Mg(OH 2) 6 2+ , Аl(ОН 2) 6 3+ (рисунок 1 ).

Рисунок 1. Структура гидратированных ионов Be ( OH 2 ) 4 2+ и А l (ОН 2 ) 6 3+ .

В гидратированных ионах силы взаимодействия между катионами и молекулами воды настолько велики, что ионы часто удерживают вокруг себя слой из молекул воды даже в кристаллах. Такая вода называется кристаллизацион но й. Этот эффект ярче проявляется в случае двухи трехзарядных катио нов, чем в случае однозарядных. Например, тетрагидратный комплекс Ве(ОН 2) 4 2+ встречается в различных солях, в том числе в ВеСО 3 . 4Н 2 О, ВеС1 2 . 4Н 2 О и BeSO 4 . 4H 2 O и несомненно присутствует в растворе.

MgCl 2 6 H 2 O А1С1 3 2 О

Mg(C1 О 3 ) 2 6H 2 O KA1(S0 4 ) 2 12H 2 O

Mg(C1 О 4 ) 2 6 Н 2 0 Fe(NH 4 ) 2 (SO 4 ) 2 6H 2 O

MgSiF 6 6H 2 O Fe(NO 3 ) 2 6H 2 O

NiSnCl 3 6H 2 O FeCl 3 6H 2 O

В таком кристалле, как FeSO 4 . 7H 2 O, шесть молекул воды присоединены к иону железа в виде комплекса Fe(OH 2) 6 2+ , а седьмая зани мает в кристалле иное положение, располагаясь вблизи иона сульфата.

В квасцах KAl(SO 4) 2 . 12H 2 О шесть молекул воды из двенадцати связа ны с ионом алюминия, а остальные шесть расположены вокруг иона калия.

Существуют также кристаллы, в которых катионы лишены некото рой доли или всех молекул воды. Так, сульфат магния образует три кристаллических соединения: MgSO 4 . 7H 2 O, MgSO 4 . H 2 O и MgSO 4 .

Устойчивость ионов в водном растворе является результатом такого распределения электрического заряда между определенным числом атомов, при котором ни один атом не проявляет значительного откло нения от электронейтральности. Рассмотрим гидратированные катионы Ве(ОН 2) 4 2+ и А1(ОН 2) 6 3+ , представленные на рисунке 1. Как бериллий, так и алюминий имеют электроотрицательность 1,5, а электроотрицательность кислорода равна 3,5. Разность электроотрицательностей соответствует ионности, немного превышающей 50%, достаточной для перемещения половины электрического заряда каждой связи на центральный атом, оставляя его примерно нейтральным. Связи О-Н могут иметь на 25% ионный характер, при этом весь заряд ионов перей дет на восемь атомов водорода в Ве(ОН 2) 4 2+ и на двенадцать атомов водорода в А1(ОН 2) 6 3+ , каждый из которых будет иметь заряд ¼ + Кроме того, каждый из этих атомов водорода может участвовать в образовании слабой связи с другой молекулой воды таким образом, что его заряд будет нейтрализоваться взаимодействием с электронной па рой атома кислорода, и тогда общий заряд гидратированных катионов Ве(ОН 2) 4 (ОН 2) 8 2+ и Al(OH 2) 6 (OH 2) 12 3+ будет распределен между наи более отдаленными атомами водорода, каждый из которых будет иметь заряд 1/8 + . Фактически такая электрическая поляризация воды распро страняется на большие расстояния; это и обусловливает высокую ди электрическую проницаемость воды.

Известно, что при образовании в водных растворах водородных связей такими молекулами, как Н 3 РО 4 , все четыре атома кислорода могут стать почти эквивалентными, обеспечивая почти полный резонанс двой ной связи между четырьмя положениями. При таком резонансе каждый атом кислорода имеет валентность 1 1 /4, удовлетворяя по связям фосфор и оставляя 3 /4 на связь с водородом. Если каждая из трех групп ОН использует свой атом водорода на образование слабой связи (в ¼ свя зи) с атомом кислорода молекулы воды, то остальные ¾ связи ока жутся достаточными, чтобы сделать атомы кислорода фосфата электрически нейтральными. Точно так же фосфатный кислород без атома во дорода может образовать слабые (в ¼) связи с атомами водорода трех соседних молекул воды, что делает его тоже электрически нейтральным.

Каждый из четырех атомов кислорода жизненно-важного фосфат-иона РО 4 3 подобным же образом может образовать водородные связи с тремя молекула ми воды. Электрический заряд гидратированного иона PO 4 (HOH) 12 3 будет тогда распределен между двенадцатью внешними атомами кис лорода, каждый с зарядом ¼-. Аналогичные гидратированные струк туры образуются ионами (НО) 2 РО 2 - и НОРО 3 2- , которые присутствуют почти в равных количествах в живых организмах.

Клатратные соединения

Благородные газы (аргон и др.), простые углеводороды и многие другие вещества образуют с водой так называемые кристаллические гидраты; так, ксенон образует гидрат Хе. 5 3 /4 Н 2 О, устойчивый примерно при 2°С и парциальном давлении ксенона 1 атм; метан образует аналогичный гидрат CH 4 . 5 3 /4 Н 2 О.

Рентгеноскопические исследования показали, что эти кристаллы имеют структуру, в которой молекулы воды образуют благодаря водородным связям решетку, напоминающую решетку льда; в ней каждая молекула воды окружена четырьмя другими молекулами, расположенными в вершинах тетраэдра на расстоянии 276 пм, но с более открытым расположением молекул, что обусловливает образование полостей (в форме пентагональных додекаэдров или других многогранников с пентагональными или гексагональными гранями), достаточно больших, чтобы в них могли помещаться атомы газов или другие молекулы (рисунок 2 ). Кри сталлы такого типа называют клатратными кристаллами .

Структура гидрата ксенона и гидратов аргона, криптона, метана, хлора, брома, сероводорода и некоторых других веществ показана на рис. 2. Кубическая ячейка данной структуры имеет ребро около 1200 пм и содержит 46 молекул воды.

Рисунок 2. Структура клатратного кристалла гидрата ксенона.

Атомы ксенона занимают пустоты (восемь на кубическую ячейку) в трехмерной решетке, образо ванной молекулами воды с участием водородных связей (46 молекул на кубическую ячейку). Рас стояние О-Н О равно 276 пм, как в кристалле льда. Два атома ксенона при атомах кислорода О О О и ½ ½ ½ находятся в центрах почти правильных пентагональных додекаэдров. Остальные шесть атомов ксенона при О ¼ ½; O ¾ ½; ½ O ¼; 1/2 O ¾; ¼ ½ O находятся в центрах четырнадцатигранников. Каж дый четырнадцатигранник (один из них выделен в центре рисунка) имеет 24 вершины (молекулы воды), две шестиугольные грани и 12 пятиугольных граней.

Гидрат хлороформа СНС1 3 . 17Н 2 О имеет несколько более сложную структуру, в которой молекула хлороформа окружена 16-сторонним многогранником, образованным 28 мо лекулами воды. Можно получить также клатратные соединения, в которых кри сталлическая решетка с водородными связями образована органически ми молекулами, например молекулами мочевины (H 2 N) 2 CO.

Была предложена интересная интерпретация механизма действия химически инертных анестезирующих средств, например галотана F 3 CCBrClH и ксенона. Согласно этому механизму, анестезирующее вещество нарушает водную структуру межклеточной или внутриклеточ ной жидкости путем образования клатратных структур, воздействую щих на нормальные межклеточные системы связи. Местные анестези рующие средства отличаются по механизму своего действия. Их молекулы могут образовать водородные связи, и, вероятно, анестезирующее действие является результатом соединения молекул анестезиру ющего вещества с белковыми молекулами или другими молекулами, входящими в состав нервов.

Другие растворители электролитов

Помимо воды и некоторые другие жидкости могут служить ионизирующими растворителями электролитов с образованием растворов, проводящих электрический ток. К таким жидкостям относятся перекись водорода, фтористый водород, жидкий аммиак и цианистый водород. Подобно воде, все эти жидкости имеют большую диэлектрическую прони цаемость. Жидкости с малой диэлектрической проницаемостью, такие, как бензол или сероуглерод, не являются ионизирующими растворите лями.

Жидкости с большой диэлектрической проницаемостью иногда называют полярными жидкостями .

Высокая диэлектрическая проницаемость воды, обуславливающая поразительную способность воды растворять вещества ионного строе ния, отчасти является следствием того, что вода способна образовывать водородные связи. Благодаря этим связям молекулы воды располагаются так, чтобы частично нейтрализовать электрическое поле. Водород ные связи образуются также и в других жидкостях - в перекиси водо рода, фтористом водороде, аммиаке (температура кипения - 33,4 °С), цианистом водороде], которые способны растворять вещества, облада ющие ионным строением.

Растворимость

Изолированная система находится в равновесии, когда ее свойства, в частности распределение компонентов между фазами, остаются по стоянными в течение длительного времени.

Если находящаяся в равновесии система состоит из раствора и другой фазы, представляющей собой один из компонентов раствора в виде чистого вещества, то концентрация этого вещества в растворе на зывается растворимостью данного вещества. Раствор в этом случае называют насыщенным .

Например, раствор буры при 0°С, содержащий 1,3 г безводного тетрабората натрия Na 2 B 4 O 7 в 100 г воды, находится в равновесии с твердой фазой Na 2 B 4 O 7 . 10H 2 О (декагидратом тетрабората натрия); со временем эта система не изменяется, состав раствора остается постоянным. Растворимость Na 2 B 4 O 7 . 10H 2 О в воде составляет, следовательно, 1,3 г Na 2 B 4 O 7 на 100 г или, учитывая гидратационную воду, 2,5 г Na 2 B 4 O 7 . 10H 2 О на 100 г воды.

Изменение в твердой фазе

Растворимость Na 2 B 4 O 7 . 10H 2 О с повышением температуры быстро возрастает; при 60 °С растворимость достигает уже 20,3 г Na 2 B 4 O 7 на 100 г. (рисунок 3 ). При нагревании системы до 70 °С и выдерживании в течение некоторого времени при этой температуре наблюдается новое явление - появляется третья фаза - кристаллическая, имеющая состав Na 2 B 4 O 7 . 5H 2 О, а прежняя кристаллическая фаза исчезает. При этой температуре растворимость декагидрата выше, чем растворимость пентагидрата; раствор, насыщенный декагидратом, оказывается пересы щенным по отношению к пентагидрату, и поэтому из такого раствора выпадают кристаллы пентагидрата. Чтобы вызвать процесс кристаллизации, иногда к раствору необходимо доба вить «затравку» (небольшие кристаллики вещества, которое растворено в данном растворе). В дальнейшем идет процесс рас творения неустойчивой фазы и кристаллизации устойчивой до тех пор, пока неустойчивая фаза не исчезнет. Третий гидрат тетрабората натрия - кернит Na 2 B 4 O 7 . 4H 2 О - обладает большей растворимостью, чем два других.

Рисунок 3. Растворимость Na 2 SO 4 . 10 H 2 O

В рассмотренном случае декагидрат менее растворим, чем пентагидрат при температуре до 61 °С, и он является, следовательно, устой чивой фазой ниже этой температуры. Кривые растворимости этих двух гидратов пересекаются при 61 °С, причем выше этой температуры пентагидрат устойчив в контакте с раствором.

В устойчивой твердой фазе, помимо сольватации, могут происходить и другие процессы. Так, ромбическая сера в определенных рас творителях менее растворима, чем моноклинная, при температурах ни же 95,5 °С, т. е. ниже температуры взаимного превращения этих двух форм; выше указанной температуры моноклинная форма менее раство рима. Принципы термодинамики требуют, чтобы температура, при ко торой кривые растворимости двух форм вещества пересекаются, была одной и той же для всех растворителей и в то же время была температурой, при которой пересекаются кривые давления насыщенного пара.

Зависимость растворимости от температуры

Растворимость вещества с повышением температуры может увели чиваться или уменьшаться. В этом отношении убедительным примером служит сульфат натрия. Растворимость Na 2 SO 4 . 10H 2 O (устойчивая твердая фаза ниже 32,4 °С) очень быстро возрастает с повышением температуры, увеличиваясь от 5 г Na 2 SO 4 на 100 г воды при 0°С до 55 г при 32,4°С. Выше 32,4 °С устойчивой твердой фазой является Na 2 SO 4 ; растворимость этой фазы быстро уменьшается с повышением темпера туры: от 55 г при 32,4 °С до 42 г при 100 °С (рисунок 4 ).

Рисунок 4. Растворимость Na 2 SO 4 . 10 H 2 O в зависимости от температуры

Растворимость большинства солей с повышением температуры возрастает; растворимость многих солей (NaCl, К 2 СrO 7) только немного изменяется с повышением температуры; и лишь некоторые соли, напри мер Na 2 SO 4 , FeSO 4 . H 2 O и Na 2 CO 3 . H 2 O, обладают растворимостью, уменьшающейся с повышением температуры (рисунок 4 и рисунок 5 ).

Рисунок 5. Кривые растворимости некоторых солей в воде

Зависимость растворимости от природы растворенного вещества и растворителя

Растворимость веществ сильно меняется в разных растворителях., Тем не менее установлено несколько общих правил, относящихся к растворимости, которые применимы главным образом к органическим со единениям.

Одно из этих правил гласит, что вещество имеет тенденцию растворяться в таких растворителях, которые химически подобны ему. Так, углеводород нафталин С 10 Н 8 обладает высокой растворимостью в бен зине, представляющем собой смесь углеводородов, несколько меньшей растворимостью - в этиловом спирте С 2 Н 5 ОН, молекулы которого состоят из коротких углеводородных цепей с гидроксильными группами, и очень плохой растворимостью - в воде, которая сильно отличается от углеводородов. В то же время борная кислота В(ОН) 3 , являющаяся гидроокисью, обладает умеренной растворимостью в воде и в спирте, т. е. в веществах, которые содержат гидроксильные группы, и нерастворима в бензине. Три указанных растворителя сами подтверждают то же правило: как бензин, так и вода смешиваются со спиртом (раство ряются в нем), в то время как бензин и вода взаимно растворяются лишь в очень небольших количествах.

Этим фактам можно дать следующее объяснение: углеводородные группы (состоящие только из атомов углерода и водорода) взаимно притягиваются очень слабо, о чем свидетельствуют более низкие тем пературы плавления и кипения углеводородов по сравнению с другими веществами приблизительно такой же молекулярной массы. В то же время между гидроксильными группами и молекулами воды существу ет очень сильное межмолекулярное притяжение; температуры плавле ния и киления воды лежат выше соответствующих температур любого другого вещества с небольшой молекулярной массой. Такое сильное притяжение обусловлено частично ионным характером связей О-Н, благодаря чему на атомы накладывается электрический заряд. Поло жительно заряженные атомы водорода притягиваются затем к отрица тельно заряженным атомам кислорода других молекул, образуя водо родные связи и прочно удерживая молекулы вместе.

Термин гидрофильный часто применяют по отношению к веществам или группам, притягивающим воду, а термин гидрофобный применяют по отношению к веществам или группам, отталкивающим воду и при тягивающим углеводороды. В действительности молекулы гидрофобного вещества воздействуют силами электронного вандерваальсова притяжения как на молекулы воды, так и на молекулы углеводородов. Растворимость паров воды, например, в керосине (смеси углеводородов) при 25 °С и давлении 0,0313 атм (т. е. при давлении насыщенного пара над жидкой водой при этой температуре) составляет 72 мг в 1 кг рас творителя, в то время как растворимость метана при том же парци альном давлении несколько меньше-10 мг в 1 кг керосина. Молекулы воды притягиваются молекулами керосина несколько сильнее, нежели молекулы метана. Различие между водой и метаном заключается в том, что при более высоких парциальных давлениях пары воды конденси руются в жидкость, которая стабилизируется межмолекулярными во дородными связями, тогда как метан продолжает оставаться газом.

Растворимость метана в полярных растворителях почти та же, что и в неполярных; в спиртах от метанола СН 3 ОН до пентанола (амилового спирта) С 5 Н 11 ОН растворимость метана составляет 72-80% зна чения для керосина. Силы вандерваальсова притяжения молекул рас творителя в отношении молекул метана остаются почти одинаковыми для разных растворителей. С другой стороны, растворимость водяных паров при давлении 0,313 атм в амиловом спирте в 1400 раз больше, чем в керосине, и вода смешивается в любых соотношениях с легкими спиртами.

Вещества, состоящие из небольших неполярных молекул, например кислород, азот и метан, растворяются в воде примерно в 10 раз хуже, чем в неполярных растворителях. Вещества, состоящие из более крупных неполярных молекул, по существу не растворяются в воде, но, как правило, хорошо растворяются в неполярных растворителях. Вода как бы противодействует включению этих молекул, поскольку образование необходимых для этого пустот сопряжено с разрывом или деформацией водородных связей между молекулами воды. Соединения, подобные бен зину и нафталину, не растворяются в воде, поскольку их молекулы в растворе мешали бы молекулам воды образовывать столь же большое число прочных водородных связей, как в чистой воде; с другой сторо ны, борная кислота растворима в воде потому, что уменьшение числа связей между молекулами воды компенсируется образованием прочных водородных связей между молекулами воды и гидроксильными группа ми молекул борной кислоты.

Растворимость солей и гидроокисей в воде

При изучении неорганической химии, особенно качественного анализа, полезно знать примерную растворимость широко применяющихся веществ. Простые правила растворимости приведены ниже. Эти прави ла применимы к соединениям обычных катионов: Na + , K + , NH 4 + , Mg 2+ , Са 2+ , Sr 2 +, Ва 2 +, Al 3+ , Cr 3+ , Mn 2+ , Fe 2 +, Fe 3+ , Co 2 +, Ni 2 +, Cu 2 +, Zn 2 +, Ag+, Cd 2 +, Sn 2+ , Hg 2 2+ , Hg 2+ и РЬ 2 +. Когда говорят, что вещество «рас творимо», то под этим понимают, что растворимость его превышает при мерно 1 г в 100 мл (примерно 0,1 М по катиону), а когда говорят, что вещество «нерастворимо», то это значит, что растворимость его не превышает 0,1 г в 100 мл (приблизительно 0,01 М): вещества с растворимостью в этих пределах или близких к ним называют умеренно раство римыми.

Класс растворимых веществ:

Все нитраты растворимы.

Все ацетаты растворимы.

Все хлориды , бромиды и иодиды растворимы, за исключением со ответствующих соединений серебра, ртути (I) (ртути со степенью окис ления + 1) и свинца. Соединения РbС1 2 и РbВr 2 умеренно растворимы в холодной воде (1 г в 100 мл при 20 °С) и лучше растворимы в горячей воде (3 и 5 г в 100 мл при 100°С соответственно).

Все сульфаты растворимы, за исключением сульфатов бария, строн ция и свинца. Умеренно растворимы CaSO 4 , Ag 2 SO 4 и Hg 2 SO 4 .

Все соли натри я , калия и аммония растворимы: исключение составляют NaSb(OH) 6 (антимонат натрия), K 2 PtCl 6 (гексахлрроплатинат калия), (NH 4) 2 PtCl 6 , К 3 Со(ТО 2) 6 (гексанитрокобальтат калия), (NH 4)зСо(NO 2) 6 и КсlO 4 .

Класс нерастворимых веществ :

Все гидроокиси нерастворимы, за исключением гидроокисей щелочных металлов, аммония и бария; Са(ОН) 2 и Sr(OH) 2 умеренно растворимы.

Все средние карбонаты и фосфаты нерастворимы, за исключением соответствующих соединений щелочных металлов и аммония. Многие кислые карбонаты и фосфаты, например Са(НСО 3) 2 иСа(Н 2 РО 4) 2 , растворимы.

Все сульфиды , за исключением сульфидов щелочных металлов, аммония и щелочноземельных металлов, нерастворимы.

К. х. н. О. В. Мосин

Литературный источник : Л. Полинг, П. Полинг. / перевод М. В. Сахарова. Ред. М. Л. Карапетьянц. Химия., Москва 1978 г.

1. Строение молекулы воды. tag but isn"t running the applet, for some reason." Your browser is completely ignoring the tag!
Вода имеет полярную молекулу. Кислород как более электроотрицательный атом оттягивает на себя общую с атомом водорода электронную плотность к себе и потому несет частичный отрицательный заряд; атомы водорода, от которых электронная плотность смещена, несут частичный положительный заряд. Таким образом, молекула воды представляет собой диполь , т.е. имеет положительно и отрицательно заряженные участки.
(Модель справа объемная, ее можно вращать при помощи нажатой левой кнопки мыши.)

2. Водородные связи.
Молекулы воды образуют друг с другом водородные связи . Они обусловлены силами притяжения между несущим частичный отрицательный заряд атомом кислорода одной молекулы и несущим частичный положительный заряд атомом водорода другой молекулы.
(Рассмотрите на модели справа, что связи образованы именно между названными выше атомами.)
Вопрос 1. Как Вы думаете: по своей природе водородные связи ближе к ковалентным или к ионным? Почему Вы так думаете?
Водородные связи обуславливают целый ряд важнейших свойств воды, в первую очередь - ее свойства как растворителя.

3. Вода как растворитель.

alt="Your browser understands the tag but isn"t running the applet, for some reason." Your browser is completely ignoring the tag!

По отношению к воде все практически вещества можно разделить на две группы:

1. Гидрофильные (от греч. "филео" - любить, имеющие положительное сродство к воде ). Эти вещества имеют полярную молекулу, включающую электроотрицательные атомы (кислород, азот, фосфор и др.). В результате отдельные атомы таких молекул также обретают частичные заряды и образуют водородные связи с молекулами воды. Примеры: сахара, аминокислоты, органические кислоты .
2. Гидрофобные (от греч. "фобос" - страх, имеющие отрицательное сродство к воде ). Молекулы таких веществ неполярны и не смешиваются с полярным растворителем, каковым является вода, но хорошо растворимы в органических растворителях, например, в эфире, и в жирах. Примером могут служить линейные и циклические углеводороды . в т.ч. бензол .

Вопрос 2. Рассмотрите внимательно две молекулы справа. Как Вы думаете, какая из этих молекул гидрофильная, а какая - гидрофобная? Почему Вы так думаете? Не узнали ли Вы - что это за вещества?

Среди органических веществ встречаются также соединения, одна часть молекулы которых неполярна и проявляет гидрофобные свойства, а другая - полярна и, следовательно, гидрофильна.

alt="Your browser understands the tag! alt="Your browser understands the tag but isn"t running the applet, for some reason." Your browser is completely ignoring the tag!
Такие вещества называются амфипатическими .
Молекула фосфотидилсерина (одного из фосфолипидов плазматической мембраны клеток, справа) может служить примером амфипатических соединений.

Вопрос 3. Рассмотрите внимательно эту молекулу. Как Вы думаете, какая из ее частей гидрофильная, а какая - гидрофобная? Расположите молекулу так, чтобы это было максимально наглядно, создайте графический файл и в нем обозначьте гидрофильный и гидрофобный участки молекулы.
Для этого, расположив молекулу наиболее выгодным образом, скопируйте все изображение экрана в буфер обмена (нажать кнопку Print Screen ), запустите графический редактор по усмотрению (достаточно Paint - Пуск - Программы - Стандартные - Paint ), обрежьте все лишнее, а на оставшемся рисунке обозначьте любим удобным способом требуемые участки. Сделайте соответствующие подписи на рисунке и сохраните файл в папку по усмотрению.

4. Вода как растворитель в живых организмах.
По образному выражению, все мы - "живые растворы". Действительно, практически все процессы как в клетках организма, так и в межклеточной среде организма протекают именно в водных растворах.

alt="Your browser understands the tag but isn"t running the applet, for some reason." Your browser is completely ignoring the tag!

Кроме того, со свойством воды как растворителя прямо связана транспортная функция внутренних жидкостей как у многоклеточных животных (кровь, лимфа, гемолимфа, целомическая жидкость), так и у многоклеточных растений.

5. Вода как реагент.
Важное значение воды связано также с ее химическими свойствами - как обычного вещества, вступающего в химические реакции с другими веществами. Наиболее важными являются расщепление воды под действием света (фотолиз ) в световой фазе фотосинтеза , участие воды как необходимого реагента в реакциях расщепления сложных биополимеров (такие реакции не случайно называются реакциями гидролиза ). И, наоборот, при реакциях образования биополимеров, полимеризации, происходит выделение воды.
Вопрос 4. Какую неточность в последней фразе исправил бы химик?

Вода - наиболее распространенное на Земле вещество, она покрывает приблизительно четыре пятых земной поверхности. Это единственное химическое соединение, которое в природных условиях существует в виде жидкости, твердого вещества (лед) и газа (пары воды). Вода играет жизненно важную роль в промышленности, быту и в лабораторной практике; она совершенно необходима для поддержания жизни. Приблизительно две трети человеческого тела приходятся на долю воды, и многие пищевые продукты состоят преимущественно из воды.

Структура и физические свойства воды. В 1860-х годах итальянский химик Станислав Канниццаро, исследуя органические соединения, содержащие группы -ОН, названные им гидроксильными , окончательно установил, что вода имеет формулу Н 2 0.

Вода - ковалентное молекулярное соединение. Связь О-Н ковалентная полярная; угол--104,5°. Кислород как более электроотрицательный атом (электроотрицательность - это способность притягивать к себе общую электронную плотность при образовании связи) оттягивает на себя общую с атомом водорода электронную плотность к себе и потому несет частичный отрицательный заряд; атомы водорода, от которых электронная плотность смещена, несут частичный положительный заряд. Таким образом, молекула воды представляет собой диполь, т.е. имеет положительно и отрицательно заряженные участки. Вода представляет собой прозрачную бесцветную жидкость, обладающую целым рядом аномальных физических свойств. Например, она имеет аномально высокие температуры замерзания и кипения, а также поверхностное натяжение. Редкой особенностью воды является то, что ее плотность в жидком состоянии при 4 °С больше плотности льда. Поэтому лед плавает на поверхности воды. Эти аномальные свойства воды объясняются существованием в ней водородных связей, которые связывают между собой молекулы как в жидком, так и в твердом состоянии. Вода плохо проводит электрический ток, но становится хорошим проводником, если в ней растворены даже небольшие количества ионных веществ.

Химические свойства воды

1. Кислотно-основные реакции. Вода обладает амфотерными свойствами. Это означает, что она может выступать как в роли кислоты, так и в роли основания. Ее амфотерные свойства обусловлены способностью воды к самоионизации:

Это позволяет воде быть, с одной стороны, акцептором протона: а с другой стороны - донором протона:

2. Окислительно-восстановительные реакции. Вода обладает способностью выступать как в роли окислителя, так и в роли восстановителя. Она окисляет металлы, расположенные в электрохимическом ряду напряжений выше олова. Например, в реакции между натрием и водой

происходит следующий окислительный процесс:

В этой реакции вода играет роль восстановителя:

Другим примером подобной реакции является взаимодействие между магнием и водяным паром:

Вода действует как окислитель в процессах коррозии. Например, один из процессов, протекающих при ржавлении железа, заключается в следующем:

Вода является важным восстановителем в биохимических процессах. Например, некоторые стадии цикла лимонной кислоты включают восстановление воды:

Этот процесс электронного переноса имеет также большое значение в восстановлении органических фосфатных соединений при фотосинтезе. Цикл лимонной кислоты и фотосинтез представляют собой сложные процессы, включающие ряд последовательно протекающих химических реакций. В обоих случаях процессы электронного переноса, происходящие в них, еще не полностью выяснены.

  • 3. Гидратация. Молекулы воды способны сольватировать как катионы, так и анионы. Этот процесс называется гидратацией. Гидрат- ная вода в кристаллах солей называется кристаллизационной водой. Молекулы воды обычно связаны с сольватируемым ими катионом координационными связями. Обозначают содержание гидратной воды в формуле вещества: CuS0 4 4Н 2 0.
  • 4. Гидролиз. Гидролиз представляет собой реакцию какого-либо иона или молекулы с водой. Примером реакций этого типа может быть реакция между хлороводородом и водой с образованием соляной кислоты. Другой пример-гидролиз хлорида железа(Ш):

5. Взаимодействие с оксидами активных металлов: СаО + Н 2 0 =

6. Взаимодействие с оксидами неметаллов: Р 2 0 5 + Н 2 0 = 2НР0 3 .

Вода широко используется в качестве растворителя в химической

технологии, а также в лабораторной практике. Она представляет собой универсальный растворитель, необходимый для протекания биохимических реакций. Дело в том, что вода прекрасно растворяет ионные соединения, а также многие ковалентные соединения. Способность воды хорошо растворять многие вещества обусловлена полярностью ее молекул, которые при растворении в воде ионных веществ ориентируются вокруг ионов, т.е. сольватируют их. Водные растворы ионных веществ являются электролитами. Растворимость ковалентных соединений в воде зависит от их способности образовывать водородные связи с молекулами воды. Простые ковалентные соединения, как, например, диоксид серы, аммиак и хлороводород, растворяются в воде. Кислород, азот и диоксид углерода плохо растворяются в воде. Многие органические соединения, содержащие атомы электроотрицательных элементов, как, например, кислорода или азота, растворимы в воде. В качестве примера укажем этанол С 2 Н 5 ОН, уксусную кислоту СНзСООН, сахар Ci 2 H 22 0 6 . Присутствие в воде нелетучих растворенных веществ, например хлорида натрия или сахара, понижает давление пара и температуру замерзания воды, но повышает ее температуру кипения. Присутствие в воде растворимых солей кальция и магния (жесткость воды) затрудняет ее использование в технологических процессах.

Жесткость воды подразделяется на временную (карбонатную, обусловленную присутствием гидрокарбонатов кальция Са(НС0 3) 2

и магния Mg (НСОЗ) 2) и постоянную (некарбонатную) жесткость. По ГОСТ Р 52029-2003 жесткость выражается в градусах жесткости (°Ж), что соответствует концентрации щелочноземельного элемента, численно равной "/2 его моля, выраженной в мг/дм 3 (г/м 3). По величине общей жесткости различают воду мягкую (до 2 мг-экв/л), средней жесткости (2-10 мг-экв/л) и жесткую (более 10 мг-экв/л).

Жесткость воды поверхностных источников существенно колеблется в течение года; она максимальна в конце зимы, минимальна - в период паводка (например, жесткость волжской воды в марте - 4,3 мг- экв/л, в мае - 0,5 мг-экв/л). В подземных водах жесткость обычно выше (до 80-100 мг-экв/л) и меньше изменяется в течение года.

Растворимость газов в воде зависит от температуры и парциального давления газа над водой: чем ниже температура и выше парциальное давление газа над водой, тем выше концентрация газа в жидкости.

Растворимость большинства твердых веществ повышается при увеличении температуры. При растворении твердого вещества протекают два процесса:

  • 1) процесс разрушения кристаллической решетки. Этот процесс требует затраты энергии, поэтому является эндотермическим",
  • 2) процесс образования гидратов (сольватов) протекает с выделением энергии.

Общая теплота растворения складывается из теплот этих двух процессов, поэтому растворение может проходить как с повышением, так и с понижением температуры.

Раствором называется гомогенная (однородная) система, состоящая из двух или более компонентов. Необходимыми компонентами раствора являются растворитель и растворенное вещество, например, растворенный в воде сахар. В одном растворителе может находиться несколько растворенных веществ. Например, при приготовлении маринада в воде растворены сахар, соль и уксусная кислота. Растворенными веществами при одинаковом агрегатном состоянии компонентов обычно считаются компоненты, находящиеся в недостатке, в то время как компонент, находящийся в избытке, считается растворителем. При разных агрегатных состояниях компонентов раствора растворителем обычно считается компонент, агрегатное состояние которого совпадает с агрегатным состоянием раствора. Например, в случае жидких растворов твердых и газообразных веществ растворителем всегда считается жидкий компонент, независимо от концентрации растворенных веществ. Если при приготовлении раствора используют две жидкости, растворителем является та, которая находится в избытке. Если при приготовлении раствора используют воду, то растворителем является вода.