Как выглядит многочлен. Как решать многочлены

Например, выражения:

a - b + c , x 2 - y 2 , 5x - 3y - z - многочлены.

Одночлены, входящие в состав многочлена, называются членами многочлена . Рассмотрим многочлен:

7a + 2b - 3c - 11

выражения: 7a , 2b , -3c и -11 - это члены многочлена. Обратите внимание на член -11 . Он не содержит переменной. Такие члены, состоящие только из числа, называются свободными .

Принято считать, что любой одночлен - это частный случай многочлена, состоящий из одно члена. В этом случае одночлен является названием для многочлена с одним членом. Для многочленов, состоящих из двух и трёх членов, тоже есть специальные названия - двучлен и трёхчлен соответственно:

7a - одночлен

7a + 2b - двучлен

7a + 2b - 3c - трёхчлен

Подобные члены

Подобные члены - одночлены, входящие в многочлен, которые отличаются друг от друга только коэффициентом , знаком или совсем не отличаются (противоположные одночлены тоже можно назвать подобными). Например, в многочлене:

3a 2 b + 5abc 2 + 2a 2 b - 7abc 2 - 2a 2 b

члены 3a 2 b , 2a 2 b и -2a 2 b , так же как и члены 5abc 2 и -7abc 2 - это подобные члены.

Приведение подобных членов

Если многочлен содержит подобные члены, то его можно привести к более простому виду путём соединения подобных членов в один. Такое действие называется приведением подобных членов . Первым делом заключим в скобки отдельно все подобные члены:

(3a 2 b + 2a 2 b - 2a 2 b ) + (5abc 2 - 7abc 2)

Чтобы соединить несколько подобных одночленов в один, надо сложить их коэффициенты, а буквенные множители оставить без изменений:

((3 + 2 - 2)a 2 b ) + ((5 - 7)abc 2) = (3a 2 b ) + (-2abc 2) = 3a 2 b - 2abc 2

Приведение подобных членов - это операция замены алгебраической суммы нескольких подобных одночленов одним одночленом.

Многочлен стандартного вида

Многочлен стандартного вида - это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.

Чтобы привести многочлен к стандартному виду, достаточно сделать приведение подобных членов. Например, представьте в виде многочлена стандартного вида выражение:

3xy + x 3 - 2xy - y + 2x 3

Сначала найдём подобные члены:

Если все члены многочлена стандартного вида содержат одну и ту же переменную, то его члены принято располагать от большей степени к меньшей. Свободный член многочлена, если он есть, ставится на последнее место - справа.

Например, многочлен

3x + x 3 - 2x 2 - 7

должен быть записан так:

x 3 - 2x 2 + 3x - 7

Согласно определению, многочлен это алгебраическое выражение представляющее собой сумму одночленов.

Для примера: 2*a^2 + 4*a*x^7 - 3*a*b^3 + 4; 6 + 4*b^3 - многочлены, а выражение z/(x - x*y^2 + 4) не является многочленом потому, что оно не является суммой одночленов. Многочлен еще иногда называют полиномом, а одночлены которые входят в состав многочлена членами многочлена или мономами.

Комплексное понятие многочлена

Если многочлен состоит из двух слагаемых, то его называют двучлен, если из трех - трехчлен. Названия четырехчлен, пятичлен и другие не используются, а в таких случаях говорят просто, многочлен. Такие названия, в зависимости от количества слагаемых, ставят все на свои места.

И термин одночлен становится интуитивно понятным. С точки зрения математики, одночлен является частным случаем многочлена. Одночлен это многочлен, который состоит из одного слагаемого.

Так же как и у одночлена, у многочлена есть свой стандартный вид. Стандартным видом многочлена называется такая запись многочлена, при которой все входящие в него в качестве слагаемых одночлены, записаны в стандартном виде и приведены подобные члены.

Стандартный вид многочлена

Процедура приведения многочлена к стандартному виду состоит в том, чтобы привести каждый из одночленов к стандартному виду, а потом все подобные одночлены между собой сложить. Сложение подобных членов многочлена называют приведением подобных.
Например, приведем подобные слагаемые в многочлене 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b.

Подобными здесь являются слагаемые 4*a*b^2*c^3 и 6*a*b^2*c^3. Суммой этих слагаемых будет одночлен 10*a*b^2*c^3. Следовательно, исходный многочлен 4*a*b^2*c^3 + 6*a*b^2*c^3 - a*b можно переписать в виде 10*a*b^2*c^3 - a*b. Эта запись и будет стандартным видом многочлена.

Из того, что любой одночлен можно привести к стандартному виду, следует также и тот факт, что любой многочлен можно привести к стандартному виду.

Когда многочлен приведен к стандартному виду, можно говорить о таком понятии как степень многочлена. Степенью многочлена называется наибольшая степень одночлена, входящего в данный многочлен.
Так, например, 1 + 4*x^3 - 5*x^3*y^2 - многочлен пятой степени, так как максимальная степень одночлена входящего в многочлен (5*x^3*y^2) пятая.

Многочленом называют сумму одночленов. Если все члены многочлена записать в стандартном виде (см. п. 51) и выполнить приведение подобных членов, то получится многочлен стандартного вида.

Всякое целое выражение можно преобразовать в многочлен стандартного вида - в этом состоит цель преобразований (упрощений) целых выражений.

Рассмотрим примеры, в которых целое выражение нужно привести к стандартному виду многочлена.

Решение. Сначала приведем к стандартному виду члены многочлена. Получим После приведения подобных членов получим многочлен стандартного вида

Решение. Если перед скобками стоит знак «плюс, то скобки можно опустить, сохранив знаки всех слагаемых, заключенных в скобки. Воспользовавшись этим правилом раскрытия скобок, получим:

Решение. Если перед скобками стоит зиак «минус», то скобки можно опустить, изменив знаки всех слагаемых» заключенных в скобки. Воспользовавшись этим правилом паскрытия скобок, получим:

Решение. Произведение одночлена и многочлена согласно распределительному закону равно сумме произведений этого одночлена и каждого члена многочлена. Получаем

Решение. Имеем

Решение. Имеем

Осталось привести подобные члены (они подчеркнуты). Получим:

53. Формулы сокращенного умножения.

В некоторых случаях приведение целого выражения к стандартному виду многочлена осуществляется с использованием тождеств:

Эти тождества называют формулами сокращенного умножения,

Рассмотрим примеры, в которых нужно преобразовать заданное выражение в миогочлеи стандартного вида.

Пример 1. .

Решение. Воспользовавшись формулой (1), получим:

Пример 2. .

Решение.

Пример 3. .

Решение. Воспользовавшись формулой (3), получим:

Пример 4.

Решение. Воспользовавшись формулой (4), получим:

54. Разложение многочленов на множители.

Иногда можно преобразовать многочлен в произведение нескольких сомножителей - многочленов или одпочленов. Такое тождественное преобразование называется разложением многочлена на множители. В этом случае говорят, что многочлен делится на каждый из этих множителей.

Рассмотрим некоторые способы разложения многочленов на множители,

1) Вынесение общего множителя за скобку. Это преобразование является непосредственным следствием распределительного закона (для наглядности нужно лишь переписать этот закон «справа налево»):

Пример 1. Разложить на множители многочлен

Решение. .

Обычно при вынесении общего множителя за скобки каждую переменную, входящую во все члены многочлена, выносят с наименьшим показателем, который она имеет в данном многочлене. Если все коэффициенты многочлена - целые числа, то в качестве коэффициента общего множителя берут наибольший по модулю общий делитель всех коэффициентов многочлена.

2) Использование формул сокращенного умножения. Формулы (1) - (7) из п. 53, будучи прочитанными «справа налево, во многих случаях оказываются полезными для разложения многочленов на множители.

Пример 2. Разложить на множители .

Решение. Имеем . Применив формулу (1) (разность квадратов), получим . Применив

теперь формулы (4) и (5) (сумма кубов, разность кубов), получим:

Пример 3. .

Решение. Сначала вынесем за скобку общий множитель. Для этого найдем наибольший общий делитель коэффициентов 4, 16, 16 и наименьшие показатели степеней, с которыми переменные а и b входят в составляющие данный многочлен одночлены. Получим:

3) Способ группировки. Он основан на том, что переместительный и сочетательный законы сложения позволяют группировать члены многочлена различными способами. Иногда удается такая группировка, что после вынесения за скобки общих множителей в каждой группе в скобках остается однн и тот же многочлен, который в свою очередь как общий множитель может быть вынесен за скобки. Рассмотрим примеры разложения многочлена на множители.

Пример 4. .

Решение. Произведем группировку следующим образом:

В первой группе вынесем за скобку общий множитель во второй - общий множитель 5. Получим Теперь многочлен как общий множитель вынесем за скобку: Таким образом, получаем:

Пример 5.

Решение. .

Пример 6.

Решение. Здесь никакая группировка не приведет к появлению во всех группах одного и того же многочлена. В таких случаях иногда оказывается полезным представить какой-либо член многочлена в виде некоторой суммы, после чего снова попробовать применить способ группировки. В нашем примере целесообразно представить в виде суммы Получим

Пример 7.

Решение. Прибавим и отнимем одночлен Получим

55. Многочлены от одной переменной.

Многочлен , где a, b - числа переменная, называется многочленом первой степени; многочлен где а, b, с - числа переменная, называется многочленом второй степени или квадратным трехчленом; многочлен где а, b, с, d - числа переменная называется многочленом третьей степени.

Вообще если о, переменная, то многочлен

называется лсмогочленол степени (относительно х); , m-члены многочлена, коэффициенты, старший член многочлена, а - коэффициент при старшем члене, свободный член многочлена. Обычно многочлен записывают по убывающим степеням переменной, т. е. степени переменной постепенно уменьшаются, в частности, на первом месте стоит старший член, на последнем - свободный член. Степень многочлена - это степень старшего члена.

Например, многочлен пятой степени, в котором старший член, 1 - свободный член многочлена.

Корнем многочлена называют такое значение при котором многочлен обращается в нуль. Например, число 2 является корнем многочлена так как

Одночлены, входящие в состав многочлена, называются его членами.

Примечание : если между стоит разность, она все равно считается суммой, а минус «забирает себе» один из членов многочлена. Например, \(4x^3 y-3ab\) можно записать вот так \(4x^3 y+(-3ab)\). Значит, его членами являются одночлены \(4x^3\) y и \(-3ab\) (а не \(4x^3y\) и \(3ab\), как можно было бы подумать).

Если многочлен состоит из двух членов, то его называют двучленом :

\(x^2-3x\); \(y+3z^5\); \(7b^2+12b^4\).

Если из трех – трехчленом :

\(x^2-3x+4\); \(5x^3-7a^2 b^4+5\); \(y+6b^4-6\).

Стандартный вид многочлена

Если все одночлены в многочлене приведены к стандартному виду и среди них нет подобных, то говорят, что это многочлен стандартного вида .

Пример:

Нестандартный вид

Стандартный вид

\(6k^2 mk-8kmk^2+6kmk\)

\(6k^2 m-2k^3 m\)

\(16a^3 b-13a^3 b+4aba^2+4ab\)


К стандартному виду может быть приведен любой многочлен.


Пример . Приведите к стандартному виду \(3a^2 b+xy+2aba-5yx+xa\).
Решение:

\(3a^2 b+xy+2aba-5yx+ax=\)

Сразу замечаем, что одночлены \(2aba\) и \(-5yx\) записаны не в . Исправляем это, преобразовывая каждый из них:
\(2aba=2aab=2a^2 b\)
\(-5yx=-5xy\)

\(=3a^2 b+xy+2a^2 b-5xy+ax=\)

Мы сказали, что имеют место как многочлены стандартного вида, так и не стандартного. Там же мы отметили, что можно любой многочлен привести к стандартному виду . В этой статье мы для начала выясним, какой смысл несет в себе эта фраза. Дальше перечислим шаги, позволяющие преобразовать любой многочлен в стандартный вид. Наконец, рассмотрим решения характерных примеров. Решения будем описывать очень подробно, чтобы разобраться со всеми нюансами, возникающими при приведении многочленов к стандартному виду.

Навигация по странице.

Что значит привести многочлен к стандартному виду?

Сначала нужно четко понимать, что понимают под приведением многочлена к стандартному виду. Разберемся с этим.

Многочлены, как и любые другие выражения, можно подвергать тождественным преобразованиям . В результате выполнения таких преобразований, получаются выражения, тождественно равные исходному выражению. Так выполнение определенных преобразований с многочленами не стандартного вида позволяют перейти к тождественно равным им многочленам, но записанным уже в стандартном виде. Такой переход и называют приведением многочлена к стандартному виду.

Итак, привести многочлен к стандартному виду – это значит заменить исходный многочлен тождественно равным ему многочленом стандартного вида, полученным из исходного путем проведения тождественных преобразований.

Как привести многочлен к стандартному виду?

Давайте поразмыслим, какие преобразования нам помогут привести многочлен к стандартному виду. Будем отталкиваться от определения многочлена стандартного вида.

По определению каждый член многочлена стандартного вида является одночленом стандартного вида , и многочлен стандартного вида не содержит подобных членов. В свою очередь многочлены, записанные в виде, отличном от стандартного, могут состоять из одночленов в не стандартном виде и могут содержать подобные члены. Отсюда логически вытекает следующее правило, объясняющее как привести многочлен к стандартному виду :

  • сначала нужно привести к стандартному виду одночлены, из которых состоит исходный многочлен,
  • после чего выполнить приведение подобных членов.

В итоге будет получен многочлен стандартного вида, так как все его члены будут записаны в стандартном виде, и он не будет содержать подобных членов.

Примеры, решения

Рассмотрим примеры приведения многочленов к стандартному виду. При решении будем выполнять шаги, продиктованные правилом из предыдущего пункта.

Здесь заметим, что иногда все члены многочлена сразу записаны в стандартном виде, в этом случае достаточно лишь привести подобные члены. Иногда после приведения членов многочлена к стандартному виду не оказывается подобных членов, следовательно, этап приведения подобных членов в этом случае опускается. В общем случае приходится делать и то и другое.

Пример.

Представьте многочлены в стандартном виде: 5·x 2 ·y+2·y 3 −x·y+1 , 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 и .

Решение.

Все члены многочлена 5·x 2 ·y+2·y 3 −x·y+1 записаны в стандартном виде, подобных членов он не имеет, следовательно, этот многочлен уже представлен в стандартном виде.

Переходим к следующему многочлену 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 . Его вид не является стандартным, о чем свидетельствуют члены 2·a 3 ·0,6 и −b·a·b 4 ·b 5 не стандартного вида. Представим его в стандартном виде.

На первом этапе приведения исходного многочлена к стандартному виду нам нужно представить в стандартном виде все его члены. Поэтому, приводим к стандартному виду одночлен 2·a 3 ·0,6 , имеем 2·a 3 ·0,6=1,2·a 3 , после чего – одночлен −b·a·b 4 ·b 5 , имеем −b·a·b 4 ·b 5 =−a·b 1+4+5 =−a·b 10 . Таким образом, . В полученном многочлене все члены записаны в стандартном виде, более того очевидно, что в нем нет подобных членов. Следовательно, на этом завершено приведение исходного многочлена к стандартному виду.

Осталось представить в стандартном виде последний из заданных многочленов . После приведения всех его членов к стандартному виду он запишется как . В нем есть подобные члены, поэтому нужно провести приведение подобных членов :

Так исходный многочлен принял стандартный вид −x·y+1 .

Ответ:

5·x 2 ·y+2·y 3 −x·y+1 – уже в стандартном виде, 0,8+2·a 3 ·0,6−b·a·b 4 ·b 5 =0,8+1,2·a 3 −a·b 10 , .

Зачастую приведение многочлена к стандартному виду является лишь промежуточным этапом при ответе на поставленный вопрос задачи. Например, нахождение степени многочлена предполагает его предварительное представление в стандартном виде.

Пример.

Приведите многочлен к стандартному виду, укажите его степень и расположите члены по убывающим степеням переменной.

Решение.

Сначала приводим все члены многочлена к стандартному виду: .

Теперь приводим подобные члены:

Так мы привели исходный многочлен к стандартному виду, это нам позволяет определить степень многочлена , которая равна наибольшей степени входящих в него одночленов. Очевидно, она равна 5.

Осталось расположить члены многочлена по убывающим степеням переменных. Для этого нужно лишь переставить местами члены в полученном многочлене стандартного вида, учитывая требование. Наибольшую степень имеет член z 5 , степени членов , −0,5·z 2 и 11 равны соответственно 3 , 2 и 0 . Поэтому многочлен с расположенными по убывающим степеням переменной членами будет иметь вид .

Ответ:

Степень многочлена равна 5 , а после расположения его членов по убывающим степеням переменной он принимает вид .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.