Проект по информатике на тему "история развития вычислительной техники". Помощь по информатике 1 история развития компьютерной техники и технологий



Потребность в приспособлениях, позволяющих ускорить процесс счёта, появилась у человека ещё тысячи лет назад. Тогда для этого использовались простейшие средства, вроде счётных палочек. Позже появился абак, больше известный нам как счёты. Он позволял выполнять только самые простейшие арифметические действия. С тех пор многое изменилось. Практически у каждого дома стоит компьютер, а в кармане лежит смартфон. Всё это можно объединить под общим названием «Компьютерные технологии» или «Вычислительная техника». В этой статье вы узнаете немного больше об истории её развития.

1623 год. Вильгельм Шиккард думает: «А почему бы мне не изобрести первый арифмометр?» И он его изобретает. У него получается механический прибор, способный выполнять основные арифметические действия (сложение, умножение, деление и вычитание) и работающий с помощью зубчатых колёс и цилиндров.

1703 год. Готфрид Вильгельм Лейбниц описывает двоичную систему счисления в своём трактате «Explication de l’Arithmtique Binaire», что на русский язык переводится как «Объяснение Двоичной Арифметики». Реализация использующих её компьютеров гораздо проще, и сам Лейбниц об этом знал. Ещё в 1679 году он создал чертёж двоичной вычислительной машины. Но на практике первое подобное устройство появилось только в середине XX века.

1804 год. Впервые появляются перфорированные карты (перфокарты). Их использование не прекратилось и в 1970-х годах. Они представляют собой листы тонкого картона, в некоторых местах которого имеются отверстия. Информация записывалась различными последовательностями этих отверстий.

1820 год. Чарльз Ксавьер Томас (да, почти как профессор Икс) выпускает арифмометр Томаса, вошедший в историю как первое устройство для счёта, выпускаемое серийно.

1835 год. Чарльз Бэббидж хочет изобрести свою собственную аналитическую машину и описывает её. Изначально задачей прибора должно было стать вычисление логарифмических таблиц с высокой точностью, но позже Бэббидж передумал. Теперь его мечтой стала машина общего назначения. На то время создание подобного аппарата было вполне реально, но работать с Бэббиджем оказалось непросто из-за его характера. В результате разногласий проект был закрыт.

1845 год. Израиль Штаффель создаёт первый в истории прибор, способный извлекать из чисел квадратные корни.

1905 год. Перси Лудгерт издаёт проект программируемого механического компьютера.

1936 год. Конрад Цузе решает создать свою вычислительную машину. Он называет его Z1.

1941 год. Конрад Цузе выпускает Z3 - первый в мире компьютер, управляемый программой. Впоследствии было выпущено ещё несколько десятков аппаратов серии Z.

1961 год. Выпуск ANITA Mark VII - первого в мире полностью электронного калькулятора.

Пара слов о поколениях компьютеров.

1 поколение. Это так называемые ламповые компьютеры. Они работают с помощью электронных ламп. Первое подобное устройство было создано в середине XX века.

2 поколение. Все пользовались компьютерами 1 поколения, пока вдруг в 1947 году Уолтер Браттейн и Джон Бардин не изобрели очень важную вещь - транзистор. Так появилось второе поколения компьютеров. Они потребляли гораздо меньше энергии, а их производительность была больше. Эти устройства были распространены в 50-х-60-х годах XX века, пока в 1958 году не была изобретена интегральная схема.

3 поколение. Работа этих компьютеров была основана на интегральных схемах. Каждая такая схема содержит сотни миллионов транзисторов. Впрочем, создание третьего поколения не остановило выпуск компьютеров второго поколения.

4 поколение. В 1969 году Тэду Хоффу в голову пришла идея заменить множество интегральных схем одним маленьким устройством. Оно было позже названо микросхемой. Благодаря этому стало возможным создавать совсем маленькие микрокомпьютеры. Первое такое устройство было выпущено компанией Intel. А в 80-х годах микропроцессоры и микрокомпьютеры оказались самыми распространёнными. Мы и сейчас пользуемся ими.

Это была краткая история развития компьютерных технологий и вычислительной техники. Надеюсь, мне удалось Вас заинтересовать. До свидания!

Как только человек открыл для себя понятие "количество", он сразу же принялся подбирать инструменты, оптимизирующие и облегчающие счёт. Сегодня сверхмощные компьютеры, основываясь на принципах математических вычислений, обрабатывают, хранят и передают информацию - важнейший ресурс и двигатель прогресса человечества. Нетрудно составить представление о том, как происходило развитие вычислительной техники, кратко рассмотрев основные этапы этого процесса.

Основные этапы развития вычислительной техники

Самая популярная классификация предлагает выделить основные этапы развития вычислительной техники по хронологическому принципу:

  • Ручной этап. Он начался на заре человеческой эпохи и продолжался до середины XVII столетия. В этот период возникли основы счёта. Позднее, с формированием позиционных систем счисления, появились приспособления (счёты, абак, позднее - логарифмическая линейка), делающие возможными вычисления по разрядам.
  • Механический этап. Начался в середине XVII и длился почти до конца XIX столетия. Уровень развития науки в этот период сделал возможным создание механических устройств, выполняющих основные арифметические действия и автоматически запоминающих старшие разряды.
  • Электромеханический этап - самый короткий из всех, какие объединяет история развития вычислительной техники. Он длился всего около 60 лет. Это промежуток между изобретением в 1887 году первого табулятора до 1946 года, когда возникла самая первая ЭВМ (ENIAC). Новые машины, действие которых основывалось на электроприводе и электрическом реле, позволяли производить вычисления со значительно большей скоростью и точностью, однако процессом счёта по-прежнему должен был управлять человек.
  • Электронный этап начался во второй половине прошлого столетия и продолжается в наши дни. Это история шести поколений электронно-вычислительных машин - от самых первых гигантских агрегатов, в основе которых лежали электронные лампы, и до сверхмощных современных суперкомпьютеров с огромным числом параллельно работающих процессоров, способных одновременно выполнить множество команд.

Этапы развития вычислительной техники разделены по хронологическому принципу достаточно условно. В то время, когда использовались одни типы ЭВМ, активно создавались предпосылки для появления следующих.

Самые первые приспособления для счёта

Наиболее ранний инструмент для счёта, который знает история развития вычислительной техники, - десять пальцев на руках человека. Результаты счёта первоначально фиксировались при помощи пальцев, зарубок на дереве и камне, специальных палочек, узелков.

С возникновением письменности появлялись и развивались различные способы записи чисел, были изобретены позиционные системы счисления (десятичная - в Индии, шестидесятиричная - в Вавилоне).

Примерно с IV века до нашей эры древние греки стали вести счёт при помощи абака. Первоначально это была глиняная плоская дощечка с нанесёнными на неё острым предметом полосками. Счёт осуществлялся путём размещения на этих полосах в определённом порядке мелких камней или других небольших предметов.

В Китае в IV столетии нашей эры появились семикосточковые счёты - суанпан (суаньпань). На прямоугольную деревянную раму натягивались проволочки или верёвки - от девяти и более. Ещё одна проволочка (верёвка), натянутая перпендикулярно остальным, разделяла суанпан на две неравные части. В большем отделении, именуемом "землёй", на проволочки было нанизано по пять косточек, в меньшем - "небе" - их было по две. Каждая из проволочек соответствовала десятичному разряду.

Традиционные счёты соробан стали популярными в Японии с XVI века, попав туда из Китая. В это же время счёты появились и в России.

В XVII столетии на основании логарифмов, открытых шотландским математиком Джоном Непером, англичанин Эдмонд Гантер изобрёл логарифмическую линейку. Это устройство постоянно совершенствовалось и дожило до наших дней. Оно позволяет умножать и делить числа, возводить в степень, определять логарифмы и тригонометрические функции.

Логарифмическая линейка стала прибором, завершающим развитие средств вычислительной техники на ручном (домеханическом) этапе.

Первые механические счётные устройства

В 1623 году немецким учёным Вильгельмом Шиккардом был создан первый механический "калькулятор", который он назвал считающими часами. Механизм этого прибора напоминал обычный часовой, состоящий из шестерёнок и звёздочек. Однако известно об этом изобретении стало только в середине прошлого столетия.

Качественным скачком в области технологии вычислительной техники стало изобретение суммирующей машины "Паскалины" в 1642 году. Её создатель, французский математик Блез Паскаль, начал работу над этим устройством, когда ему не было и 20 лет. "Паскалина" представляла собой механический прибор в виде ящичка с большим количеством взаимосвязанных шестерёнок. Числа, которые требовалось сложить, вводились в машину поворотами специальных колёсиков.

В 1673 году саксонский математик и философ Готфрид фон Лейбниц изобрёл машину, выполнявшую четыре основных математических действия и умевшую извлекать квадратный корень. Принцип её работы был основан на двоичной системе счисления, специально придуманной учёным.

В 1818 году француз Шарль (Карл) Ксавье Тома де Кольмар, взяв за основу идеи Лейбница, изобрёл арифмометр, умеющий умножать и делить. А ещё спустя два года англичанин Чарльз Бэббидж приступил к конструированию машины, которая способна была бы производить вычисления с точностью до 20 знаков после запятой. Этот проект так и остался неоконченным, однако в 1830 году его автор разработал другой - аналитическую машину для выполнения точных научных и технических расчётов. Управлять машиной предполагалось программным путём, а для ввода и вывода информации должны были использоваться перфорированные карты с разным расположением отверстий. Проект Бэббиджа предугадал развитие электронно-вычислительной техники и задачи, которые смогут быть решены с её помощью.

Примечательно, что слава первого в мире программиста принадлежит женщине - леди Аде Лавлейс (в девичестве Байрон). Именно она создала первые программы для вычислительной машины Бэббиджа. Её именем впоследствии был назван один из компьютерных языков.

Разработка первых аналогов компьютера

В 1887 году история развития вычислительной техники вышла на новый этап. Американскому инженеру Герману Голлериту (Холлериту) удалось сконструировать первую электромеханическую вычислительную машину - табулятор. В её механизме имелось реле, а также счётчики и особый сортировочный ящик. Прибор считывал и сортировал статистические записи, сделанные на перфокартах. В дальнейшем компания, основанная Голлеритом, стала костяком всемирно известного компьютерного гиганта IBM.

В 1930 году американец Ванновар Буш создал дифференциальный анализатор. В действие его приводило электричество, а для хранения данных использовались электронные лампы. Эта машина способна была быстро находить решения сложных математических задач.

Ещё через шесть лет английским учёным Аланом Тьюрингом была разработана концепция машины, ставшая теоретической основой для нынешних компьютеров. Она обладала всеми главными свойствами современного средства вычислительной техники: могла пошагово выполнять операции, которые были запрограммированы во внутренней памяти.

Спустя год после этого Джордж Стибиц, учёный из США, изобрёл первое в стране электромеханическое устройство, способное выполнять двоичное сложение. Его действия основывались на булевой алгебре - математической логике, созданной в середине XIX века Джорджем Булем: использовании логических операторов И, ИЛИ и НЕ. Позднее двоичный сумматор станет неотъемлемой частью цифровой ЭВМ.

В 1938 году сотрудник университета в Массачусетсе Клод Шеннон изложил принципы логического устройства вычислительной машины, применяющей электрические схемы для решения задач булевой алгебры.

Начало компьютерной эры

Правительства стран, участвующих во Второй мировой войне, осознавали стратегическую роль вычислительных машин в ведении военных действий. Это послужило толчком к разработкам и параллельному возникновению в этих странах первого поколения компьютеров.

Пионером в области компьютеростроения стал Конрад Цузе - немецкий инженер. В 1941 году им был создан первый вычислительный автомат, управляемый при помощи программы. Машина, названная Z3, была построена на телефонных реле, программы для неё кодировались на перфорированной ленте. Этот аппарат умел работать в двоичной системе, а также оперировать числами с плавающей запятой.

Первым действительно работающим программируемым компьютером официально признана следующая модель машины Цузе - Z4. Он также вошёл в историю как создатель первого высокоуровневого языка программирования, получившего название "Планкалкюль".

В 1942 году американские исследователи Джон Атанасов (Атанасофф) и Клиффорд Берри создали вычислительное устройство, работавшее на вакуумных трубках. Машина также использовла двоичный код, могла выполнять ряд логических операций.

В 1943 году в английской правительственной лаборатории, в обстановке секретности, была построена первая ЭВМ, получившая название "Колосс". В ней вместо электромеханических реле использовалось 2 тыс. электронных ламп для хранения и обработки информации. Она предназначалась для взлома и расшифровки кода секретных сообщений, передаваемых немецкой шифровальной машиной "Энигма", которая широко применялась вермахтом. Существование этого аппарата ещё долгое время держалось в строжайшей тайне. После окончания войны приказ о его уничтожении был подписан лично Уинстоном Черчиллем.

Разработка архитектуры

В 1945 году американским математиком венгерско-немецкого происхождения Джоном (Яношем Лайошем) фон Нейманом был создан прообраз архитектуры современных компьютеров. Он предложил записывать программу в виде кода непосредственно в память машины, подразумевая совместное хранение в памяти компьютера программ и данных.

Архитектура фон Неймана легла в основу создаваемого в то время в Соединённых Штатах первого универсального электронного компьютера - ENIAC. Этот гигант весил около 30 тонн и располагался на 170 квадратных метрах площади. В работе машины были задействованы 18 тыс. ламп. Этот компьютер мог произвести 300 операций умножения или 5 тыс. сложения за одну секунду.

Первая в Европе универсальная программируемая ЭВМ была создана в 1950 году в Советском Союзе (Украина). Группа киевских учёных, возглавляемая Сергеем Алексеевичем Лебедевым, сконструировала малую электронную счётную машину (МЭСМ). Её быстродействие составляло 50 операций в секунду, она содержала около 6 тыс. электровакуумных ламп.

В 1952 году отечественная вычислительная техника пополнилась БЭСМ - большой электронной счётной машиной, также разработанной под руководством Лебедева. Эта ЭВМ, выполнявшая в секунду до 10 тыс. операций, была на тот момент самой быстродействующей в Европе. Ввод информации в память машины происходил при помощи перфоленты, выводились данные посредством фотопечати.

В этот же период в СССР выпускалась серия больших ЭВМ под общим названием "Стрела" (автор разработки - Юрий Яковлевич Базилевский). С 1954 года в Пензе началось серийное производство универсальной ЭВМ "Урал" под руководством Башира Рамеева. Последние модели были аппаратно и программно совместимы друг с другом, имелся широкий выбор периферических устройств, позволяющий собирать машины различной комплектации.

Транзисторы. Выпуск первых серийных компьютеров

Однако лампы очень быстро выходили из строя, весьма затрудняя работу с машиной. Транзистор, изобретённый в 1947 году, сумел решить эту проблему. Используя электрические свойства полупроводников, он выполнял те же задачи, что и электронные лампы, однако занимал значительно меньший объём и расходовал не так много энергии. Наряду с появлением ферритовых сердечников для организации памяти компьютеров, использование транзисторов дало возможность заметно уменьшить размеры машин, сделать их ещё надёжнее и быстрее.

В 1954 году американская фирма "Техас Инструментс" начала серийно производить транзисторы, а два года спустя в Массачусетсе появился первый построенный на транзисторах компьютер второго поколения - ТХ-О.

В середине прошлого столетия значительная часть государственных организаций и крупных компаний использовала компьютеры для научных, финансовых, инженерных расчётов, работы с большими массивами данных. Постепенно ЭВМ приобретали знакомые нам сегодня черты. В этот период появились графопостроители, принтеры, носители информации на магнитных дисках и ленте.

Активное использование вычислительной техники привело к расширению областей её применения и потребовало создания новых программных технологий. Появились языки программирования высокого уровня, позволяющие переносить программы с одной машины на другую и упрощающие процесс написания кода ("Фортран", "Кобол" и другие). Появились особые программы-трансляторы, преобразовывающие код с этих языков в команды, прямо воспринимаемые машиной.

Появление интегральных микросхем

В 1958-1960 годах, благодаря инженерам из Соединённых Штатов Роберту Нойсу и Джеку Килби, мир узнал о существовании интегральных микросхем. На основе из кремниевого или германиевого кристалла монтировались миниатюрные транзисторы и другие компоненты, порой до сотни и тысячи. Микросхемы размером чуть более сантиметра работали гораздо быстрее, чем транзисторы, и потребляли намного меньше энергии. С их появлением история развития вычислительной техники связывает возникновение третьего поколения ЭВМ.

В 1964 году фирмой IBM был выпущен первый компьютер семейства SYSTEM 360, в основу которого легли интегральные микросхемы. С этого времени можно вести отсчёт массового выпуска ЭВМ. Всего было произведено более 20 тыс. экземпляров данного компьютера.

В 1972 году в СССР была разработана ЕС (единая серия) ЭВМ. Это были стандартизированные комплексы для работы вычислительных центров, имевшие общую систему команд. За основу была взята американская система IBM 360.

В следующем году компания DEC выпустила мини-компьютер PDP-8, ставший первым коммерческим проектом в этой области. Относительно низкая стоимость мини-компьютеров дала возможность использовать их и небольшим организациям.

В этот же период постоянно совершенствовалось программное обеспечение. Разрабатывались операционные системы, ориентированные на то, чтобы поддерживать максимальное количество внешних устройств, появлялись новые программы. В 1964 году разработали Бейсик - язык, предназначенный специально для подготовки начинающих программистов. Через пять лет после этого возник Паскаль, оказавшийся очень удобным для решения множества прикладных задач.

Персональные компьютеры

После 1970 года начался выпуск четвёртого поколения ЭВМ. Развитие вычислительной техники в это время характеризуется внедрением в производство компьютеров больших интегральных схем. Такие машины теперь могли совершать за одну секунду тысячи миллионов вычислительных операций, а ёмкость их ОЗУ увеличилась до 500 миллионов двоичных разрядов. Существенное снижение себестоимости микрокомпьютеров привело к тому, что возможность их купить постепенно появилась у обычного человека.

Одним из первых производителей персональных компьютеров стала компания Apple. Создавшие её Стив Джобс и Стив Возняк сконструировали первую модель ПК в 1976 году, дав ей название Apple I. Стоимость его составила всего 500 долларов. Через год была представлена следующая модель этой компании - Apple II.

Компьютер этого времени впервые стал похожим на бытовой прибор: помимо компактного размера, он имел изящный дизайн и интерфейс, удобный для пользователя. Распространение персональных компьютеров в конце 1970 годов привело к тому, что спрос на большие ЭВМ заметно упал. Этот факт всерьёз обеспокоил их производителя - компанию IBM, и в 1979 году она выпустила на рынок свой первый ПК.

Два года спустя появился первый микрокомпьютер этой фирмы с открытой архитектурой, основанный на 16-разрядном микропроцессоре 8088, производимом компанией "Интел". Компьютер комплектовался монохромным дисплеем, двумя дисководами для пятидюймовых дискет, оперативной памятью объемом 64 килобайта. По поручению компании-создателя фирма "Майкрософт" специально разработала операционную систему для этой машины. На рынке появились многочисленные клоны IBM PC, что подтолкнуло рост промышленного производства персональных ЭВМ.

В 1984 году компанией Apple был разработан и выпущен новый компьютер - Macintosh. Его операционная система была исключительно удобной для пользователя: представляла команды в виде графических изображений и позволяла вводить их с помощью манипулятора - мыши. Это сделало компьютер ещё более доступным, поскольку теперь от пользователя не требовалось никаких специальных навыков.

ЭВМ пятого поколения вычислительной техники некоторые источники датируют 1992-2013 годами. Вкратце их основная концепция формулируется так: это компьютеры, созданные на основе сверхсложных микропроцессоров, имеющие параллельно-векторную структуру, которая делает возможным одновременное выполнение десятков последовательных команд, заложенных в программу. Машины с несколькими сотнями процессоров, работающих параллельно, позволяют ещё более точно и быстро обрабатывать данные, а также создавать эффективно работающие сети.

Развитие современной вычислительной техники уже позволяет говорить и о компьютерах шестого поколения. Это электронные и оптоэлектронные ЭВМ, работающие на десятках тысяч микропроцессоров, характеризующиеся массовым параллелизмом и моделирующие архитектуру нейронных биологических систем, что позволяет им успешно распознавать сложные образы.

Последовательно рассмотрев все этапы развития вычислительной техники, следует отметить интересный факт: изобретения, хорошо зарекомендовавшие себя на каждом из них, сохранились до наших дней и с успехом продолжают использоваться.

Классы вычислительной техники

Существуют различные варианты классификации ЭВМ.

Так, по назначению компьютеры делятся:

  • на универсальные - те, которые способны решать самые различные математические, экономические, инженерно-технические, научные и другие задачи;
  • проблемно-ориентированные - решающие задачи более узкого направления, связанные, как правило, с управлением определёнными процессами (регистрация данных, накопление и обработка небольших объёмов информации, выполнение расчётов в соответствии с несложными алгоритмами). Они обладают более ограниченными программными и аппаратными ресурсами, чем первая группа компьютеров;
  • специализированные компьютеры решают, как правило, строго определённые задачи. Они имеют узкоспециализированную структуру и при относительно низкой сложности устройства и управления достаточно надёжны и производительны в своей сфере. Это, к примеру, контроллеры или адаптеры, управляющие рядом устройств, а также программируемые микропроцессоры.

По размерам и производительной мощности современная электронно-вычислительная техника делится:

  • на сверхбольшие (суперкомпьютеры);
  • большие компьютеры;
  • малые компьютеры;
  • сверхмалые (микрокомпьютеры).

Таким образом, мы увидели, что устройства, сначала изобретённые человеком для учёта ресурсов и ценностей, а затем - быстрого и точного проведения сложных расчётов и вычислительных операций, постоянно развивались и совершенствовались.

Муниципальное образовательное учреждение

<< Средняя общеобразовательная школа №2035 >>

Реферат по информатике

<< История развития компьютерной техники >>

Работу подготовил:

Ученик 7 класса

Беляков Никита

Проверил:

Учитель информатики

Дубова Е.В.

Москва, 2015

Введение

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Начало эпохи

Первая ЭВМ ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ - малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстродействием, оперативной памятью, способом ввода и вывода информации и т.д.

С.А. Лебедев – Родился в Нижнем Новгороде в семье учителя и литератора Алексея Ивановича Лебедева и учительницы из дворян Анастасии Петровны (в девичестве Мавриной). Был третьим ребёнком в семье. Старшая сестра - художница Татьяна Маврина. В 1920 году семья переехала в Москву.

В апреле 1928 года закончил Высшее техническое училище им. Баумана по специальности инженер-электрик

Первое поколение ЭВМ

Первое поколение ЭВМ - ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.

Второе поколение ЭВМ

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение ЭВМ

Третье поколение ЭВМ создавалось на новой элементной базе - интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем - сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами - БИС; затем появились сверхбольшие интегральные схемы - СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM -360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств - магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

Четвёртое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора. Микропроцессор - это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера - процессора. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ. МикроЭВМ относятся к машинам четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры (ПК). Первый ПК появился на свет в 1976 году в США. С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM . Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC ( Personal Computer ). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей человеческой деятельности.

Другая линия в развитии ЭВМ четвертого поколения, это - суперкомпьютер. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Суперкомпьютер – это многопроцессорный вычислительный комплекс.

Заключение

Разработки в области вычислительной техники продолжаются. ЭВМ пятого поколения - это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. В них будет возможным ввод с голоса, голосовое общение, машинное «зрение», машинное «осязание».

Машины пятого поколения - это реализованный искусственный интеллект.

Http://otvet.mail.ru/question/73952848

  • 1623г. Первая "считающая машина", созданная Уильямом Шикардом. Это довольно громоздкий аппарат мог применять простые арифметические действия (сложение, вычитание) с 7-значными числами.
  • 1644г. "Вычислитель" Блеза Паскаля - первая по настоящему популярная считающая машина, производившая арифметические действия над 5-значными числами.
  • 1668г. Вычислитель сера Сэмюэля Морланда, предназначавшийся для финансовых операций.
  • 1674г. Вильгельм Годфрид фон Лейбниц сконструировал механическую счётную

машину, которая умела производить не только операции сложения и вычитания, но и умножения!

  • 1820г. Первый калькулятор - "Арифмометр" Шарля де Кольмара. Продержалось на рынке (с некоторыми усовершенствованиями) целых 90 лет!
  • 1834г. Знаменитая "Аналитическая машина" Чарльза Бэббиджа - первый программируемый компьютер, использовавший примитивные программы на перфокартах.
  • 1871г. Бэббидж создал прототип аналитического устройства компьютера и печатающее устройство - принтер.
  • 1886г. Дорр Фелт создал Comptometer - первое устройство с клавишным вводом данных.
  • 1890г. В США произведена перепись населения - впервые в этом участвовала "считающая машина", созданная Германом Холлритом.
  • 1935г. Корпорация IBM (International Business Machines) начала выпуск массовых вычислителей IBM-601.
  • 1937г. Математик Алан Тюринг создал "математическую модель" компьютера, получившую название "Машина Тюринга".
  • 1938г. Кондрад Цузе, друг и коллега знаменитого Вернера фон Брауна, создал в Берлине один из первых компьютеров - V1.
  • 1943г. Говард Эйкен создает "ASCC Mark I" - машину, считающуюся дедушкой современных компьютеров. Её вес составлял более 7 тонн и состоял из 750 000 частей. Машина применялась в военных целях - для расчёта артиллерийских таблиц.
  • 1945г. Джон фон Нейман разработал теоретическую модель устройства компьютера - первое в мире описание компьютера, использовавшего загружаемые извне программы. В этом же году Мочли и Эккерт создали ENIAC - самый грандиозный и мощный ламповый компьютер той эпохи. Компьютер весит более 70 тон и содержит в себе почти 18 тысяч электронных ламп. Рабочая частота компьютера не превышает 100КГц (несколько сот операций в секунду).
  • 1956г. В Массачусетском технологическом институте создан первый компьютер на транзисторной основе. В этом же году IBM создала первый накопитель информации - прототип винчестера - жёсткий диск КАМАС 305.
  • 1958-1959г.Д. Килби и Р. Нойс создали уникальную цепь логических элементов на

поверхности кремниевого кристалла, соединённого алюминиевыми контактами -

первый прототип микропроцессора, интегральную микросхему.

  • 1960г. АТ разработали первый модем.
  • 1963г. Дуглас Энгельбарт получил патент на изобретённый им манипулятор - "мышь".
  • 1968г. Основание фирмы Intel Робертом Нойсем и Гордоном Мурем.
  • 1969г. Intel представляет первую микросхему оперативной памяти объёмом 1 Кб. В этом же году фирма Xerox создаёт технологию лазерного копирования изображений, которая через много лет ляжет в основу технологии печати лазерных принтеров. Первые "ксероксы".
  • 1971г. ПО заказу японского производителя микрокалькуляторов Busicom команда разработчиков Intel под руководством Теда Хоффа создаёт первый 4-разрядный микропроцессор Intel-4004. Скорость процессора - 60 тысяч операций в секунду. В этом же году команда и исследователей лаборатории IBM в Сан-Хосе создает первый 8-дюймовый "флоппи-диск".
  • 1972г. Новый микропроцессор от Intel - 8-разрядный Intel-8008. Xerox создаёт первый микрокомпьютер Dynabook, размером чуть больше записной книжки.
  • 1973г. В научно-исследовательском центре Xerox создан прототип первого персонального компьютера. Первый герой, появившийся на экране, - Коржик, персонаж детского телесериала "Улица Сезам". В этом же году Scelbi Computer Consulting Company выпускает на рынок первый готовый персональный компьютер, укомплектованный процессором Intel-8008 и с 1 Кб оперативной памяти. В этом же году IBM представляет жёсткий диск IBM 3340. Ёмкость диска составляла 16 Кб, он содержал 30 магнитных цилиндров по 30 дорожек в каждом. Из-за этого и был назван "винчестером" (30/30" - марка знаменитой винтовки). И в этом же году Боб Мэткэлф изобретает систему связи компьютеров, получившую название Ethernet.
  • 1974г. Новый процессор от Intel - 8-разрядный Intel-8080. Скорость 640 тысяч операций в секунду. В скором времени на рынке появляется недорогой компьютер Altair на основе этого процессора, работающий под управлением операционной системы CP/M. В этом же году первый процессор выпускает главный конкурент Intel в 70-х годах - фирма Zilog.
  • 1975г. IBM выпускает первый лэптоп. Первой музыкальной композицией, воспроизведённой с помощью компьютера, стала мелодия песни The Beatles "Fool On The Hill".
  • 1976г. Фирма Advanced Micro Devices (AMD) получает право на копирование инструкций и микрокода процессоров Intel. Начало "войны процессоров". В этом же году Стив Возняк и Стив Джобс собирают в собственной гаражной мастерской компьютер серии Apple. А 1 апреля того же года на свет появляется компания Apple Computer. Компьютер Apple I поступает в широкую продажу с весьма сакраментальной цифрой на ценнике - 666. 66$.
  • 1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который
  • 1977г. В продажу поступают массовые компьютеры Commodore и Apple II. Который снабжён оперативной памятью в 4 Кб, постоянной памятью 16 Кб, клавиатурой и дисплеем. Цена за всё удовольствие - 1300$. Apple II обзаводится модной добавкой - дисководом флоппи-дисков.
  • 1978г. Intel представляет новый микропроцессор - 16 разрядный Intel-8086, работающий с частотой 4,77 МГц (330 тысяч операций в секунду). Основана компания Hayes - будущий лидер в производстве модемов.commodore выпустила на рынок первые модели матричных принтеров.
  • 1979г. Появление процессора Intel-8088, а также первых видеоигр и компьютерных приставок для них. Японская фирма NEC выпускает первый микропроцессор в этой стране. Hayes выпускает первый модем со скоростью 300 бод, предназначенный для нового компьютера Apple.
  • 1980г. Компьютер Atari становится самым популярным компьютером года. Seagate Technologies представляет первый винчестер для персональных компьютеров - жёсткий диск диаметров 5. 25 дюймов.
  • 1981г. Появляется компьютер Apple III. Intel представляет первый сопроцессор. Основана фирма Creative Technology (Сингапур) - создатель первой звуковой карты. Появляется в продаже первый массовый жёсткий диск ёмкостью 5 Мб и стоимостью 1700$.
  • 1982г. На рынке появляется новая модель от IBM - знаменитая IBM PC AT - и первые клоны IBM PC. IBM представляет процессор 16-разрядный 80286. Рабочая частота 6 МГц. (1,5 млн. операций в секунду). Hercules представляет первую чёрно-белую видеокарту - Hercules Graphics Adapter (HGA).
  • 1983г.commodore выпускает первый портативный компьютер с цветным дисплеем (5 цветов). Вес компьютера 10кг, цена 1600$. IBM представляет компьютер IBM PC XT, укомплектованный 10 Мб жёстким диском, дисководом на 360 Кб и 128 (позднее 768) Кб оперативной памяти. Цена компьютера составляла 5000$. Выпущен миллионный компьютер Apple II. Появляются первые модули памяти SIMM. Philips и Sony представляют миру технологию CD-ROM.
  • 1984г. Apple выпускает модем на 1200 бод. Hewlett-Packard выпускает первый лазерный принтер серии LaserJet с разрешением до 300 dpi. Philips выпускает первый дисковод CD-ROM. IBM представляет первые мониторы и видеоадаптеры EGA (16 цветов, разрешение - 630х350 точек на дюйм), а также профессиональные 14-дюймовые мониторы, поддерживающие 256 цветов и разрешение в 640х480 точек.
  • 1985г. Новый процессор от Intel - 32 разрядный 80386DX (со встроенным сопроцессором). Рабочая частота 16 МГц, скорость около 5 млн. операций в секунду. Первый модем от U. S. Robotics - Courier 2400 бод.
  • 1986г. На компьютере Amiga демонстрируется первый анимационный ролик со звуковыми эффектами. Рождение технологии мультимедиа. Рождение стандарта SCSI (Small Computer System Interface).
  • 1987г. Intel представляет новый вариант процессора 80386DX с рабочей частотой 20 МГц. Шведским национальным институтом контроля и измерений утверждается первый стандарт допустимых значений излучения мониторов. U. S. Robotics представляет модем Courier HST 9600
  • 1988г.compaq выпускает первый компьютер с оперативной памятью 640 Кб - стандартная память для всех последующих поколений DOS. Hewlett-Packard выпускает первый струйный принтер серии DeskJet. Стив Джобс и основанная им компания NexT выпускает первую рабочую станцию, оснащённую новым процессором Motorola, фантастическим для того времени объёмом памяти (8 Мб), 17-дюймовым монитором и жёстким диском на 256 Мб. Цена компьютера - 6500$.
  • 1989г. Creative Labs представляет Sound Blaster 1. 0, 8-битную монофоническую звуковую карту. Рождение стандарта SuperVGA (разрешение 800х600 точек с поддержкой 16 тысяч цветов).
  • 1990г. Рождение сети Интернет. Intel представляет новый процессор - 32-разрядный 80486SX. Скорость 27 миллионов операций в секунду. IBM представляет новый стандарт видеоплат - XGA - в качестве замены традиционному VGA (разрешение 1024х768 точек с поддержкой 65 тысяч цветов).
  • 1991г. Apple представляет первый монохромный ручной сканер. AMD представляет усовершенствованные "клоны" процессоров Intel - 386DX с тактовой частотой 40 МГц и 486SX с частотой 20 МГц. Первая стерео музыкальная карта - 8-битный Sound Blaster Pro.
  • 1992г. NEC выпускает первый привод CD-ROM с удвоенной скорость (2х).
  • 1993г. Intel представляет новый стандарт шины и слота для подключения дополнительных плат - PCI. Первый процессор нового поколения процессоров Intel - 32-разрядный Pentium. Рабочая частота от 60 МГ, быстродействие - от 100 млн. операций в секунду. Microsoft и Intel совместно с крупнейшими производителями ПК вырабатывают технологию Plug&Play (включи и работай), допускающую автоматическое распознавание компьютером новых устройств, а также их конфигурацию.
  • 1994г. Iomega представляет диски и дисководы ZIP и JAZ - альтернативу

существующим дискетам 1. 44 Мб. US Robotics выпускает первый модем со скоростью 28800 бод.

  • 1995г. Анонсирован стандарт новых носителей на лазерных дисках - DVD. AMD выпускает последний процессор поколения 486 - AMD 486DX-120. Intel представляет процессор Pentium Pro, предназначенный для мощных рабочих станций. Компания 3dfx выпускает набор микросхем Voodoo, который лёг в основу первых ускорителей трёхмерной графики для домашних ПК. Первые очки и шлемы "виртуальной реальности" для домашних ПК.
  • 1996г. Рождение шины USB. Intel выпускает процессор Pentium MMX с поддержкой новых инструкций для работы с мультимедиа. Начало производства массовых жидкокристаллических мониторов для домашних ПК.
  • 1997г. Появление процессоров Pentium II, и альтернативных процессоров AMD K6. Первые приводы DVD. Выпуск первых звуковых плат формата PCI. Новый графический порт AGP.
  • 1998г. Apple выпускает новый компьютер iMac, отличающийся не только своей мощью, но и потрясающим дизайном. Выпуск процессоров Celeron с урезанной кэш-памятью второго уровня. "Трёхмерная революция": на рынке появляется десяток новых моделей трёхмерных ускорителей, интегрированных в обычные видеокарты. В течение года прекращён выпуск видеокарт без 3D-ускорителей.
  • 1999г. Выпуск новых процессоров Pentium III.
  • 2000-2003 гг. Жёсткая конкурентная борьба между Intel и AMD, приведшая к созданию процессоров с ужасающей скоростью 3200 МГц. Это привело и к росту оперативной памяти, объёму жёстких дисков, видеокарт и т.д.

Боьшинство людей, по-видимому, считают, что термины “вычислительная машина” и “вычислительная техника" синонимами и связывают их с физическим оборудованием, как, например, микропроцессором, дисплеем, дисками, принтерами и другими истройствами, привлекающими внимание людей, когда человек видит компьютер. Хотя эти устройства и важны, всё-таки они составляют только “верхушку айсберга”. На начальном этапе использованаия современного компьютера мы имеем дело не с самим компьютером, а с совокупностью правил, называемых языками программироваания, на которых указываются действия, которые должен выполнять компьютер. Важное значение языка программирования подчёркивается тем фактом, что сама вычислительная машина может рассматриваться как аппаратный интерпретатор какого-нибудь конкретного языка, который называется машинным языком. Для обеспечения эффективной работы машины разработаны машинные языки, использование которых представляет известные трудностидля человека. Большинство пользователей не чувствуют этих неудобств благодаря наличию одного или нескольких языков, созданных для улучшения связи человека с машиной. Гибкость вычислительной машины проявляется в том, что она может исполнять программы-трансляторы (в общем случае онм называются компиляторами или интерпретаторами) для преобразования программ с языков, ориентированных на пользователей, в программы на машинном языке. (В свою очередь даже сами программы, игры, системные оболочки являются ни чем иным, как довольно простая программа-транслятор, которая по мере работы, или игры обращается при помощи своих команд к “компьютерным внутренностям и наружностям”, транслиуя свои команды в машинные языки. И всё это происходит в реальном времени.)

Муниципальное общеобразовательное учреждение

Садовская средняя общеобразовательная школа №1

Аннинского муниципального района

Воронежской области

Предмет: информатика и ИКТ

Реферат

«История развития

компьютерной техники»

Исполнитель:

учащийся 9 «А» класса

Лукин Александр Александрович

Руководитель:

Демченкова Оксана Евгеньевна,

учитель информатики и ИКТ

Садовое, 2010

Оглавление


1. Введение……………………………………………………………3

2. Счётные устройства до появления ЭВМ………………………... 4

1.1. Домеханический период ……………………………………. 4

1.1.1. Счёты на пальцах …………………………………….. 4

1.1.2. Счёты на камнях ………………………………………4

1.1.3. Счет на Абаке ………………………………………….4

1.1.4. Палочки Непера ………………………………………..5

1.1.5. Логарифмическая линейка ……………………………5

1.2. Механический период ………………………………………..6

1.2.1. Машина Блеза Паскаля ………………………………..6

1.2.2. Машина Готфрида Лейбница …………………………7

1.2.3. Перфокарты Жаккара ………………………………… 7

1.2.4. Разностная машина Чарльза Бэббиджа ………………8

1.2.5. Герман Холлерит ………………………………………9

1.2.6. Конрад Цузе …………………………………………....9

1.2.7. Говард Айкен ………………………………………….10

3. Электронно-вычислительный период ……………………………11

2.1. Аналоговые вычислительные машины (АВМ) …………….11

2.2. Электронные вычислительные машины (ЭВМ) …………...11

2.2.1. I поколение ЭВМ ……………………………………..12

2.2.2. II поколение ЭВМ …………………………………….13

2.2.3. III поколение ЭВМ …………………………………....15

2.2.4. IV поколение ЭВМ ……………………………………16

2.2.5. V поколение ЭВМ …………………………………….17

2.3. Аналого-цифровые вычислительные машины (АЦВМ) …..18

4. Заключение ……………………………………………………….. 19

5. Список литературы ……………………………………………......20

Введение

Слово «компьютер» означает «вычислитель», т.е. устройство для вычислений. Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Более 1500 лет тому назад для счета использовались счетные палочки, камешки и т.д.

Данная тема актуальна. Так как компьютеры охватили все сферы человеческой деятельности. В наше время трудно представить себе, что без компьютеров можно обойтись. А ведь не так давно, до начала 70-х годов вычислительные машины были доступны весьма ограниченному кругу специалистов, а их применение, как правило, оставалось окутанным завесой секретности и малоизвестным широкой публике. Однако в 1971 году произошло событие, которое в корне изменило ситуацию и с фантастической скоростью превратило компьютер в повседневный рабочий инструмент десятков миллионов людей. В том, вне всякого сомнения, знаменательном году еще почти никому не известная фирма Intel из небольшого американского городка с красивым названием Санта-Клара (шт. Калифорния), выпустила первый микропроцессор. Именно ему мы обязаны появлением нового класса вычислительных систем – персональных компьютеров, которыми теперь пользуются, по существу, все, от учащихся начальных классов и бухгалтеров до ученых и инженеров.

В XXI веке невозможно представить себе жизнь без персонального компьютера. Компьютер прочно вошел в нашу жизнь, став главным помощником человека. На сегодняшний день в мире существует множество компьютеров различных фирм, различных групп сложности, назначения и поколений.

В данной работе я стремлюсь дать достаточно широкую картину истории развития компьютерной техники.

Таким образом, целью моей работы является рассмотреть развитие компьютерной техники с древних времен до настоящего времени, а также дать краткий обзор счётным устройствам, начиная с домеханического периода и заканчивая современными ЭВМ.

Счётные устройства до появления ЭВМ

Домеханический период

Счёты на пальцах

Во все времена людям нужно было считать. О том, когда человечество научилось, считать мы можем, строить лишь догадки. Но можно с уверенностью сказать, что для простого подсчета наши предки использовали пальцы рук, способ, который мы с успехом используем до сих пор. А как поступить в том случае если вы хотите запомнить результаты вычислений или подсчитать, то чего больше чем пальцев рук. В этом случае можно сделать насечки на дереве или на кости. Скорее всего, так и поступали первые люди, о чем и свидетельствуют археологические раскопки. Пожалуй, самым древним из найденных таких инструментов считается кость, с зарубками, найденная в древнем поселении Дольни Вестоници на юго-востоке Чехии в Моравии. Этот предмет получивший название «вестоницкая кость» предположительно использовался за 30 тыс. лет до н. э. Несмотря на то, что на заре человеческих цивилизаций, были изобретены уже довольно сложные системы исчисления использование засечек для счета продолжалось еще довольно таки долго. Счет на пальцах, несомненно, самый древний и наиболее простой способ вычисления. У многих народов пальцы рук остаются инструментом счета и на более высоких ступенях развития. К числу этих народов принадлежали и греки, сохраняющие счет на пальцах в качестве практического средства очень долгое время.

Счёты на камнях

Чтобы сделать процесс счета более удобным, первобытный человек начал использовать вместо пальцев небольшие камни. Он складывал из камней пирамиду и определял, сколько в ней камней, но если число велико, то подсчитать количество камней на глаз трудно. Поэтому он стал складывать из камней более мелкие пирамиды одинаковой величины, а из-за того что на руках десять пальцев, то пирамиду составляли именно десять камней.

Счет на Абаке

Во времена древнейших культур человеку приходилось решать задачи, связанные с торговыми расчетами, с исчислением времени, с определением площади земельных участков и т.д. Рост объемов этих расчетов приводили даже к тому, что из одной страны в другую приглашались специально обученные люди, хорошо владевшие техникой арифметического счета. Поэтому рано или поздно должны были появиться устройства, облегчающие выполнение повседневных расчетов.

Так в Древней Греции и в Древнем Риме были созданы приспособления для счета, называемые абак (от греческого слова abakion – “дощечка, покрытая пылью”). Абак называют также римскими счетами. Вычисления на них проводились путем перемещения счетных костей и камешков (калькулей) в полосковых углублениях досок из бронзы, камня, слоновой кости, цветного стекла. В своей примитивной форме абак представлял собой дощечку (позднее он принял вид доски, разделенной на колонки перегородками). На ней проводились линии, разделявшие ее на колонки, а камешки раскладывались в эти колонки по тому же позиционному принципу, по которому кладется число на наши счеты. Эти счеты сохранились до эпохи Возрождения.

В странах Древнего Востока (Китай, Япония, Индокитай) существовали китайские счеты. На каждой нити или проволоке в этих счетах имелось по пять и по две костяшки. Счет осуществлялся единицами и пятерками.

В России для арифметических вычислений применялись русские счеты, появившиеся в XVI веке, но кое-где счеты можно встретить и сегодня.

Палочки Непера

Первым устройством для выполнения умножения был набор деревянных брусков, известных как палочки Непера. Они были изобретены шотландцем Джоном Непером (1550-1617гг.). На таком наборе из деревянных брусков была размещена таблица умножения. Кроме того, Джон Непер изобрел логарифмы.

Данное изобретение оставило заметный след в истории оставило изобретение Джоном Непером логарифмов, о чем сообщалось в публикации 1614 г. Его таблицы, расчет которых требовал очень много времени, позже были “встроены” в удобное устройство, чрезвычайно ускоряющее процесс вычисления, - логарифмическую линейку; она была изобретена в конце 1620-х годов. В 1617 г. Непер придумал и другой способ перемножения чисел. Инструмент, получивший название “костяшки Непера”, состоял из набора сегментированных стерженьков, которые можно было располагать таким образом, что, складывая числа, в прилегающих друг к другу по горизонтали сегментах, мы получали результат их умножения.

Теории логарифмов Непера суждено было найти обширное применение. Однако его “костяшки” вскоре были вытеснены логарифмической линейкой и другими вычислительными устройствами-в основном механического типа, - первым изобретателем которых стал гениальный француз Блез Паскаль.

Логарифмическая линейка

Развитие приспособлений для счета шло в ногу с достижениями математики. Вскоре после открытия логарифмов в 1623 г. была изобретена логарифмическая линейка.

В 1654 г. Роберт Биссакар, а в 1657 г. независимо С. Патридж (Англия) разработали прямоугольную логарифмическую линейку - это счетный инструмент для упрощения вычислений, с помощью которого операции над числами заменяются операциями над логарифмами этих чисел. Конструкция линейки сохранилась в основном до наших дней.

Логарифмической линейки была суждена долгая жизнь: от 17 века до нашего времени. Вычисления с помощью логарифмической линейки производятся просто, быстро, но приближенно. И, следовательно, она не годится для точных, например финансовых, расчетов.

Эскиз механического тринадцатиразрядного суммирующего устройства с десятью колесами был разработан еще Леонардо да Винчи (1452- 1519). По этим чертежам в наши дни фирма IBM в целях рекламы построила работоспособную машину.

Первая механическая счетная машина была изготовлена в 1623 г. профессором математики Вильгельмом Шиккардом (1592-1636). В ней были механизированы операции сложения и вычитания, а умножение и деление выполнялось с элементами механизации. Но машина Шиккарда вскоре сгорела во время пожара. Поэтому биография механических вычислительных устройств ведется от суммирующей машины, изготовленной в 1642 г. Блезом Паскалем.

В 1673 г. другой великий математик Готфрид Лейбниц разработал счетное устройство, на котором уже можно было умножать и делить.

В 1880г. В.Т. Однер создает в России арифмометр с зубчаткой с переменным количеством зубцов, а в 1890 году налаживает массовый выпуск усовершенствованных арифмометров, которые в первой четверти XIX в. были основными математическими машинами, нашедшими применение во всем мире. Их модернизация "Феликс" выпускалась в СССР до 50-х годов.

Мысль о создании автоматической вычислительной машины, которая бы работала без участия человека, впервые была высказана английским математиком Чарльзом Бэббиджем (1791-1864) в начале XIX в. В 1820-1822 гг. он построил машину, которая могла вычислять таблицы значений многочленов второго порядка.

Считается, что первую механическую машину, которая могла выполнять сложение и вычитание, изобрел в 1646г. молодой 18-летний французский математик и физик Блез Паскаль. Она называется "паскалина".

Эта машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина Паскаля имела размеры 36/13/8 сантиметров, этот небольшой латунный ящичек было удобно носить с собой. Она имела несколько специальных рукояток, при помощи которых осуществлялось управление, имела ряд маленьких колес с зубьями. Первое колесо считало единицы, второе - десятки, третье – сотни и т.д. Сложение в машине Паскаля производится вращением колес вперед. Двигая их обратно, выполняется вычитание.

Хотя “паскалина” вызвала всеобщий восторг, она не принесла изобретателю богатства. Тем не менее, изобретенный им принцип связанных колес явился основой, на которой строилось большинство вычислительных машин на протяжении следующих трех столетий. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.

Основной недостаток “паскалины” состоял в неудобстве выполнения на ней всех операций, за исключением простого сложения. Первая машина, позволявшая легко производить вычитание, умножение и деление, была изобретена позже в том же XVII в. в Германии. Заслуга этого изобретения принадлежит Готфриду Вильгельму Лейбницу.

Следующим шагом было изобретение машины, которая могла выполнять умножение и деление. Такую машину изобрел в 1671 г. немец Готфрид Лейбниц. Находясь в Париже, Лейбниц познакомился с голландским математиком и астраномом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство, которое облегчило ба расчеты. “Поскольку это недостойно таких замечательных людей, подобно рабам, терять время на вычислительную работу, которую можно было бы доверить кому угодно при использовании машины”.

Хоть машина Лейбница и была похожа на "паскалину", она имела движущуюся часть и ручку, с помощью которой можно было крутить специальное колесо или цилиндры, расположенные внутри аппарата. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Самоповторение тоже осуществлялось автоматически.

В 1673 г. он изготовил механический калькулятор. Но прославился он прежде всего не этой машиной, а созданием дифференциального и интегрального исчисления. Он заложил также основы двоичной системы счисления, которая позднее нашла применение в автоматических вычислительных устройствах.

Следующая ступень развития вычислительных устройств как будто не имела ничего общего с числами, по крайней мере, вначале. На протяжении всего XVIII в. на французских фабриках по производству шелковых тканей велись эксперименты с различными механизмами, управляющими станком при помощи перфорационной ленты, перфорационных карт или деревянных барабанов. Во всех трех системах нить поднималась или опускалась в соответствии с наличием или отсутствием отверстий - так создавался желаемый рисунок ткани.

Французский ткач и механик Жозеф Жаккар создал первый образец машины, управляемой введением в нее информацией. В 1802 г. он построил машину, которая облегчила процесс производства тканей со сложным узором. При изготовлении такой ткани нужно поднять или опустить каждую из ряда нитей. После этого ткацкий станок протягивает между поднятыми и пущенными нитями другую нить. Затем каждая из нитей опускается или поднимается в определенном порядке и станок снова пропускает через них нить. Этот процесс многократно повторяется до тех пор, пока не будет получена нужная длина ткани с узором. Для задания узора на ткани Жаккар использовал ряды отверстий на картах. Если применялось десять нитей, то в каждом ряду карты предусматривалось место для десяти отверстий. Карта закреплялась на станке в устройстве, которое могло обнаруживать отверстия на карте. Это устройство с помощью щупов проверяло каждый ряд отверстий на карте.

Работа станка программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока. Информация на карте управляла станком.

Из всех изобретателей прошлых столетий, внесших тот или иной вклад в развитие вычислительной техники, ближе всего к созданию компьютера в современном его понимании подошел англичанин Чарльз Бэббидж.

В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. В 1822 г. Чарльз Бэббидж построил счетное устройство, которое назвал разностной машиной. В эту машину вводилась информация на картах. Для выполнения ряда математических операций в машине применялись цифровые колеса с зубьями. Однако из-за нехватки средств эта машина не была закончена, и сдана в музей Королевского колледжа в Лондоне, где хранится, и по сей, день.

Однако эта неудача не остановила Бэббиджа, и в 1834 году он приступил к новому проекту – созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. Для этого она должна была уметь выполнять программы, вводимые с помощью перфокарт (карт из плотной бумаги с информацией, наносимой с помощью отверстий, как в ткацких станках), и иметь “склад” для запоминания данных и промежуточных результатов (в современной терминологии - память). С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. Аналитическая машина в отличие от своей предшественницы должна была не просто решать математические задачи одного определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. В действительности это не что иное, как первый универсальный программируемый компьютер. Но если Разностная машина имела сомнительные шансы на успех, то Аналитическая машина и вовсе выглядела нереалистичной. Её просто невозможно было построить и запустить в работу. В своем окончательном виде машина должна была быть не меньше железнодорожного локомотива. Ее внутренняя конструкция представляла собой беспорядочное нагромождение стальных, медных и деревянных деталей, часовых механизмов, приводимых в движение паровым двигателем. Малейшая нестабильность какой-нибудь крошечной детали приводила бы к стократно усиленным нарушениям в других частях, и тогда вся машина пришла бы в негодность.

К сожалению, он не смог довести до конца работу по созданию Аналитической машины – она оказалась слишком сложной для техники того времени. Но заслуга Бэббиджа в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера.

В 1985 г. сотрудники Музея науки в Лондоне решили выяснить, наконец, возможно ли на самом деле построить вычислительную машину Бэббиджа. После нескольких лет напряженной работы старания увенчались успехом. В ноябре 1991 г. незадолго до двухсотлетия со дня рождения знаменитого изобретателя, разностная машина впервые произвела серьезные вычисления.

Лишь через 19 лет спустя после смерти Бэббиджа один из принципов, лежащий в основе Аналитической машины, - использование перфокарт-нашел воплощение в действующем устройстве. Это был статистический табулятор, построенный американцем Германом Холлеритом с целью ускорить обработку результатов переписи населения США в 1890 г.

В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в своё время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей.

Лишь спустя 100 лет машина Бэббиджа привлекла внимание инженеров. В конце 30-х годов XX века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. Конрад Цузе создал машину Z3, полностью управляемую с помощью программы.

Большой толчок в развитии вычислительной техники дала вторая мировая война: американским военным понадобился компьютер.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы ІВМ построил довольно мощную по тем временам вычислительную машину «Марк-1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле. Программа обработки данных вводилась с перфоленты. Размеры: 15/2,5 м., 750000 деталей. "Марк-1" мог перемножить два 23-х разрядных числа за 4 секунды.

ЭВМ IV поколения не получили широкого распространения из-за своей специфики. Это явилось стимулом для разработки ЭВМ V поколения, при разработки которых ставились совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ I - IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основными задачами разработчиков ЭВМ V поколения являлось создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), возможность ввода информации в ЭВМ при помощи голоса, различных изображений. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.

П О К О Л Е Н И Я Э В М

ХАРАКТЕРИСТИКИ

I поколение

II поколение

III поколение

IV поколение

Годы применения

Основной элемент

Эл. лампа

Транзистор

Количество ЭВМ в мире (шт.)

Десятки тысяч

Миллионы

Размеры ЭВМ

Значительно меньше

микроЭВМ

Быстродействие (усл)

Носитель информации

Перфокарта, перфолента

Магнитная лента

Гибкий диск

Аналого-цифровые вычислительные машины (АЦВМ)

АЦВМ - это такие машины, которые совмещают в себе достоинства АВМ и ЭВМ. Они имеют такие характеристики, как быстродействие, простота программирования и универсальность. Основной операцией является интегрирование, которое выполняется с помощью цифровых интеграторов.

В АЦВМ числа представляются как в ЭВМ (последовательностью цифр), а метод решения задач как в АВМ (метод математического моделирования).

Заключение

Персональный компьютер быстро вошел в нашу жизнь. Еще несколько лет назад было редкостью увидеть какой-нибудь персональный компьютер – они были, но были очень дорогие, и даже не каждая фирма могла иметь у себя в офисе компьютер. Теперь же в каждом третьем доме есть компьютер, который уже глубоко вошел в жизнь человека.

Современные вычислительные машины представляют одно из самых значительных достижений человеческой мысли, влияние которого на развитие научно-технического прогресса трудно переоценить. Область применения ЭВМ огромна и непрерывно расширяется.

Даже 30 лет назад было только около 2000 различных сфер применения микропроцессорной техники. Это управление производством (16%), транспорт и связь (17%), информационно-вычислительная техника (12%), военная техника (9%), бытовая техника (3%), обучение (2%), авиация и космос (15%), медицина (4%), научное исследование, коммунальное и городское хозяйство, банковский учёт, метрология, и другие области.

Для многих мир без компьютера – далекая история, примерно такая же далекая, как открытие Америки или Октябрьская революция. Но каждый раз, включая компьютер, невозможно перестать удивляться человеческому гению, создавшему это чудо.

Современные персональные IВМ РС-совместимые компьютеры являются наиболее широко используемым видом компьютеров, их мощность постоянно увеличивается, а область применения расширяется. Эти компьютеры могут объединяться в сети, что позволяет десяткам и сотням пользователей легко обмениваться информацией и одновременно получать доступ к общим базам данных. Средства электронной почты позволяют пользователям компьютеров с помощью обычной телефонной сети посылать текстовые и факсимильные сообщения в другие города и страны и получать информацию из крупных банков данных.
Глобальная система электронной связи Intеrnеt обеспечивает за крайне низкую цену возможность оперативного получения информации из всех уголков земного шара, предоставляет возможности голосовой и факсимильной связи, облегчает создание внутрикорпоративных сетей передачи информации для фирм, имеющих отделения в разных городах и странах.

Однако возможности IВМ РС-совместимых персональных компьютеров по обработке информации все же ограничены, и не во всех ситуациях их применение оправдано.

Персональные компьютеры, разумеется, претерпели существенные изменения за время своего победного шествия по планете, но они изменили и сам мир.

Библиографический список

1. Богатырев Р.В. На заре компьютеров.// Мир ПК. 2004. - №4

2. Зуев К.А. Компьютер и общество.– Москва.: Издательство политической литературы, 1990г.

3. Прохоров А.М. Большая советская энциклопедия. – Москва.: Издательство «Советская энциклопедия», 1971г.

4. Фигурная В.С. Из истории компьютеров.// Мир ПК. 2005. - №1

5. Фролов А.В., Фролов Г.В. «Аппаратное обеспечение IBM PC» – М.: ДИАЛОГ- МИФИ, 1992г.

Ресурсы Internet.

· http://www.bashedu.ru/konkurs/tarhov/russian/index_r.htm

· http://museum.iu4.bmstu.ru/abak/index.html

· http://www.computer-museum.ru/histussr/9.htm

· http://www.homepc.ru/adviser/15817/

· http://www.computerra.ru/print/hitech/novat/20724/

· http://schools.keldysh.ru/sch444/MUSEUM/PRES/DK-12-2002.htm

· http://www.bashedu.ru/konkurs/tarhov/russian/minsk-32.htm

· http://www.technotronic.org/compochelovek_4_1999.html