Основные уравнения вращательного движения. Савельев И.В


Твердое тело можно представить как совокупность материальных точек. При вращении тела все эти точки имеют одинаковые угловые скорости и ускорения. Используя результаты § 7.6, сравнительно несложно получить уравнение движения твердого тела при его вращении вокруг неподвижной оси.
Уравнение движения
Для вывода основного уравнения динамики вращательного движения можно поступить следующим образом. Разделить мысленно тело на отдельные, достаточно малые элементы, которые можно было бы рассматривать как материальные точки (рис. 7.33). Записать для каждого элемента уравнение (7.6.13), и все эти уравнения почленно сложить. При этом внутренние силы, действующие между отдельными элементами, в уравнение движения тела не войдут. Сумма их моментов в результате сложения уравнений окажется равной нулю, так как по третьему закону Ньютона силы взаимодействия равны по модулю и направлены вдоль одной прямой в противоположные стороны. Учитывая далее, что при вращении твердого тела все его точки совершают одинаковые угловые перемещения с одинаковыми скоростями и ускорениями, можно таким образом получить уравнение вращательного движения всего тела.
Однако вывод этого уравнения довольно громоздок, поэтому мы на нем останавливаться не будем. Тем более что это уравнение имеет такую же форму, что и уравнение (7.6.13) для материальной точки, движущейся по окружности:
О"
О"

(7.7.1)
d(J В этом уравнении JI
щих на тело относительно оси вращения.
Читается уравнение (7.7.1) так: производная по времени от момента импульса равна суммарному моменту внешних сил.
Следует иметь в виду, JITO вращение тела вокруг оси могут вызывать лишь силы Ft, лежащие в плоскости, перпендикулярной оси вращения (рис. 7.34). Силы же Fk, направленные параллельно оси вращения, очевидно, способны вызвать лишь перемещение тела вдоль оси. Момент каждой силы Fl равен взятому со знаком плюс или минус произведению модуля этой силы на плечо d, т. е. на длину отрезка перпендикуляра, опу-щенного из точки С оси на линию действия силы Ft:
Mi = ±Ftd. (7.7.2)
Момент силы, вращающий тело вокруг данной оси против часовой стрелки, считается положительным, а по часовой стрелке - отрицательным.
Момент инерции тела
В формулу (7.7.1) входит момент инерции тела J. Момент инерции тела J равен сумме моментов инерции AJ- отдельных малых элементов, на которые можно разбить все тело:
(7.7.3)
і
Так как момент инерции материальной точки
AJ^Amtf, (7.7.4)
где Атпі - масса элемента тела, а г, - его расстояние до оси вращения (см. рис. 7.33), то
J = J A mtrf . (7.7.5)
385
13-Мякишев, 10 кл.
Момент инерции тела зависит не только от массы тела, но и от характера распределения этой массы. Чем больше вытянуто
Рис. 7.35
тело вдоль оси вращения, тем меньше его момент инерции, так как тем ближе к оси вращения расположены отдельные элементы тела. Очевидно также, что, изменив ось вращения тела, мы тем самым изменим и его момент инерции. У твердых тел момент инерции относительно данной оси - постоянная величина. Поэтому изменение момента импульса может происходить лишь за счет изменения угловой скорости. Соответственно уравнение (7.7.1) можно записать в виде:
jft = М. (7.7.6)
Читается это уравнение так: произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно сумме моментов (относительно той же оси) всех внешних сил, приложенных к телу.
Уравнение (7.7.6) показывает, что при вращении тела момент инерции играет роль массы, момент силы - роль силы, а угловое ускорение - роль линейного ускорения при движении материальной точки или центра масс.
В том, что угловое ускорение определяется действительно моментом силы, т. е. силой и плечом, а не просто силой, убедиться нетрудно. Так, раскрутить велосипедное колесо до одной и той же угловой скорости одной и той же силой (напри-мер, усилием пальца) можно гораздо быстрее, если прикладывать силу к ободу колеса (это создает больший момент), а не к спицам вблизи втулки (рис. 7.35).
Для того чтобы убедиться в том, что угловое ускорение определяется именно моментом инерции, а не массой тела, нужно иметь в распоряжении тело, форму которого можно легко изменять, не меняя массы. Велосипедное колесо здесь непригодно. Но можно воспользоваться своим собственным телом. Попробуйте закрутиться на пятке, оттолкнувшись от пола другой ногой. Если вы при этом прижмете руки к груди, то угловая скорость окажется большей, чем если вы раскинете руки в стороны. Эффект будет особенно заметным, если в обе руки взять по толстой книге.
Моменты инерции обруча и цилиндра
Найти момент инерции тела произвольной несимметричной формы довольно сложно. Проще его измерить опытным путем, чем вычислить.
Мы ограничимся вычислением момента инерции тонкого обруча, вращающегося вокруг оси, проходящей через его центр. Если масса колеса сосредоточена главным образом в его ободе (как, например, у велосипедного колеса), то такое колесо приближенно можно рассматривать как обруч, пренебрегая массой спиц и втулки.
Разобьем обруч на N одинаковых элементов. Если т - масса всего обруча, то масса каждого элемента Дmi = ^ . Толщину
обруча будем считать много меньшей ее радиуса (рис. 7.36). Если число элементов выбрать достаточно большим, то каждый элемент можно рассматривать как материальную точку. Поэтому момент инерции произвольного элемента с номером і будет равен:
Д Jt = Дт;Д2. (7.7.7)
Подставляя выражение (7.7.7) в формулу (7.7.5) для полного момента инерции, получим:
N
(7.7.8)
J= Д^Д miR2 = mR2.

Рис. 7.36
Здесь мы учли, что расстояние R для всех элементов одинаково и что сумма
масс элементов равна массе т об-
I
руча.
13*
387
Получился очень простой результат: момент инерции обруча равен произведению его массы на квадрат радиуса. Момент инерции обруча данной массы тем больше, чем больше его радиус. Формула (7.7.8) определяет также момент инерции
полого тонкостенного цилиндра при его вращении вокруг оси симметрии.
Вычисление момента инерции сплошного однородного цилиндра массой тп и радиусом R относительно его оси симметрии представляет более сложную задачу. Мы приведем лишь результат расчета: (7.7.9)
J =\ mR2. Следовательно, если сравнить моменты инерции двух цилиндров одинакового размера и массы, один из которых полый, а другой сплошной, то у второго цилиндра момент инерции будет в два раза меньше. Это связано с тем, что у сплошного цилиндра масса расположена в среднем ближе к оси вращения.
Мы познакомились с уравнением вращательного движения твердого тела. По форме оно похоже на уравнение для поступательного движения твердого тела. Дано определение новых физических величин, характеризующих твердое тело: момента инерции и момента импульса.

Величина, равная произведению массы точки и квадрата расстояния от нее до оси вращения , называется моментом инерции точки относительно этой оси

При использовании момента силы и момента инерции равенство принимает вид

Сравнивая это выражение со вторым законом Ньютона для поступательного движения, приходим к выводу, что при описании вращательного движения с помощью углового ускорения роль массы выполняет момент инерции , а роль силы момент силы .

Установим теперь связь между угловым ускорением и моментом сил, действующих на тело, вращающееся вокруг неподвижной оси (рис.5).

Рисунок 5

Разобьем мысленно тело на малые элементы массами , которые можно считать материальными точками, т.е. будем рассматривать твердое тело как систему материальных точек с неизменными расстояниями между ними. При вращении тела вокруг неподвижной оси его точки двигаются по окружностям радиусов , которые лежат в плоскостях, перпендикулярных оси вращения.

Пусть на каждую точку действует внешняя сила и сумма внутренних сил со стороны остальных частиц системы.

Поскольку точки движутся по плоским окружностям с тангенциальными ускорениями , то это ускорение вызывают касательные составляющие сил и .

Запишем второй закон Ньютона для тангенциального ускорения i - й точки

Умножив обе части последнего равенства на и выразив тангенциальные ускорения точек через угловое (), одинаковое для всех точек тела, получим:

Просуммируем по всем точкам системы, учитывая, что сумма моментов всех внутренних сил равна нулю. Действительно, все внутренние силы можно сгруппировать на попарно равные и противоположно направленные. Силы каждой пары лежат на одной прямой, поэтому имеют одинаковые плечи, а значит равные, но противоположно направленные моменты. В результате получаем уравнение вращательного движения твердого тела вокруг неподвижной оси как системы материальных точек

Сумма моментов внешних сил, действующих на тело, равна моменту результирующей этих сил относительно оси OO ′:

Моментом инерции тела относительно некоторой оси называют сумму моментов инерции всех его точек относительно той же оси :

С учетом полученных соотношений, определяющих понятия момента инерции тела и суммарного момента сил M , имеем:

Это выражение называют уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вектор углового ускорения тела совпадает по направлению с вектором момента сил M относительно неподвижной оси, а момент инерции тела – величина скалярная, следовательно, предыдущее уравнение можно записать в векторной форме:



Из этого уравнения можно выразить угловое ускорение

Полученное уравнение (*) называют вторым законом Ньютона для вращательного движения твердого тела . Отличие от поступательного движения заключается в том, что вместо линейного ускорения используется угловое, роль силы выполняет момент силы , а роль массы – момент инерции .

В динамике поступательного движения равными силами считаются те, которые сообщают телам равной массы одинаковые ускорения. При вращательном движении одна и та же сила может сообщать телу разные угловые ускорения в зависимости от того, как далеко лежит линия действия силы от оси вращения. Поэтому, например, велосипедное колесо легче привести в движение, прикладывая силу к ободу, чем к середине спицы. Разные тела получают под действием одинаковых моментов сил одинаковые угловые ускорения, если равны их моменты инерции. Момент инерции зависит от массы и ее распределения относительно оси вращения . Поскольку угловое ускорение обратно пропорционально моменту инерции, то при прочих равных условиях тело легче привести в движение, если его масса сконцентрирована ближе к оси вращения.

5. Момент инерции частицы и твердых тел: стержня, цилиндра, диска, шара

Каждое тело независимо от того, вращается оно или находится в состоянии покоя, обладает определенным моментом инерции относительно любой выбранной оси подобно тому, как тело имеет массу независимо от его состояния движения или покоя. Таким образом, момент инерции является мерой инертности тела при вращательном движении . Очевидно, что проявляется момент инерции только тогда, когда на тело начинает действовать момент внешних сил, который вызывает угловое ускорение. Согласно определению момент инерции – величина аддитивная . Это означает, что момент инерции тела относительно некоторой оси равен сумме моментов инерции отдельных его частей . Отсюда следует метод расчета моментов инерции тел .

Для вычисления момента инерции необходимо мысленно разбить тела на достаточно малые элементы , точки которых лежат на одинаковом расстоянии от оси вращения, затем найти произведение массы каждого элемента и квадрата его расстояния до оси и, наконец, просуммировать все произведения. Чем больше элементов берется, тем точнее метод. В случае, когда тело разбивается на бесконечно большое количество бесконечно малых элементов , суммирование заменяется интегрированием по всему объему тела

Для тела с неравномерным распределением массы формула дает среднюю плотность.

В этом случае плотность в данной точке определяется как предел отношения массы бесконечно малого элемента к его объему

Расчет момента инерции произвольных тел является довольно трудоемкой задачей. Приведем в качестве примера вычисление моментов инерции некоторых однородных тел правильной геометрической формы относительно их осей симметрии. Вычислим момент инерции сплошного цилиндра (диска) радиусом R , толщиной h и массой m относительно оси, проходящей через центр перпендикулярно основанию цилиндра. Разобьем цилиндр на тонкие кольцевые слои радиусом r и толщиной dr (рис.6, а ).

Рисунок 6, а

где – масса всего слоя. Объем слоя (), где h – высота слоя. Если плотность материала цилиндра ρ , то масса слоя будет равна

Для вычисления момента инерции цилиндра необходимо просуммировать моменты инерции слоев от центра цилиндра (), до его края (), т.е. вычислить интеграл:и е )

Рисунок 6, е

Твердого тела вокруг неподвижной оси.

Момент импульса твердого тела при вращательном движении вокруг оси z вычисляется как

Тогда уравнение динамики вращательного движения примет вид:

Если тело твердое, то , поэтому, с учетом того, что (угловое ускорение), получаем выражение

Это уравнение динамики вращательного движения твердого тела вокруг неподвижной оси :

угловое ускорение вращательного движения твердого тела вокруг неподвижной оси прямо пропорционально величине момента внешних сил относительно этой оси .

Замечание . По аналогии со вторым законом Ньютона, в котором ускорение определяется силой, уравнение динамики вращательного движения твёрдого тела дает связь между угловым ускорением и моментом силы. В этом смысле момент инерции тела играет роль меры инертности при вращательном движении .

Примеры вычисления моментов инерции.

1) Момент инерции тонкого кольца (прямого тонкостенного цилиндра) массы m и радиуса R относительно оси z, перпендикулярной плоскости кольца, проходящей через центр кольца

2) Момент инерции диска (сплошного цилиндра) массы m и радиуса R относительно оси z, перпендикулярной к плоскости диска, проходящей через центр диска (сплошного цилиндра).

Выделим тонкий цилиндр радиусом r и толщиной dr .

Масса этого цилиндра , .

3) Момент инерции тонкого стержня относительно оси z, являющейся срединным перпендикуляром. Масса стержня m, длина L.

Выделим на расстоянии x от оси маленькую часть стержня длиной dx.

Масса этой части и . Поэтому

.

4) Момент инерции тонкостенного шара относительно любой оси симметрии z. Масса шара m, радиус R.

Выделим на поверхности сферы кольцевой сегмент, для которого ось z является осью симметрии. Сегмент опирается на малый центральный угол dj, положение сегмента определяется углом j, отсчитываемым от плоскости экватора, перпендикулярной оси z.

Тогда радиус кольца ,

его масса , поэтому

или

5) Момент инерции сплошного шара относительно любой оси симметрии z. Масса шара m, радиус шара R.

Представим шар как набор вложенных друг в друга тонкостенных сфер переменного радиуса r и толщиной dr . Масса одной такой сферы .

Момент инерции такой сферы .

.

Теорема Гюйгенса-Штейнера

Как связаны между моменты инерции твердого тела относительно двух параллельных осей?

Рассмотрим две параллельные оси z 1 и z 2 . Введем две системы координат так, чтобы их оси х и у были параллельны друг другу, причем вторая система координат была получена параллельным переносом из первой на вектор, перпендикулярный осям z 1 и z 2 . Тогда расстояние между осями будет равно .

В этом случае координаты любой i- й малой частицы тела связаны соотношениями

Квадрат расстояния от этой точки до первой оси z 1:

и до второй оси z 2 .

Вычисляем момент инерции относительно второй оси:

В этом равенстве

Момент инерции тела относительно оси z 1 ,

Учтём, что и (где x 1С и y 1С – координаты центра масс тела в 1й системе координат) и получим

Если предположить, что ось z 1 проходит через центр масс тела , то x 1С =0 и y 1С =0, поэтому в этом случае выражение упрощается:

Это выражение носит название теоремы Гюйгенса-Штейнера : момент инерции твердого тела относительно произвольной оси равен сумме момента инерции тела относительно параллельной оси, проходящей через центр масс тела и квадрата расстояния между осями, умноженного на массу тела .

Пример . Момент инерции стрежня относительно оси, проходящей через край стержня, перпендикулярно ему, равен сумме момента инерции относительно срединной оси и массе, умноженный на квадрат половины длины стержня:

.

Пример . Рассмотрим движение грузов на невесомой нерастяжимой нити, перекинутой через блок (диск). Массы грузов m 1 и m 2 (m 1 < m 2), масса блока m. Трения в оси блока нет. Нить не скользит по блоку. Силами сопротивления в воздухе пренебрегаем. Найти ускорение грузов. Радиус блока R.

Решение . Фиксируем систему отсчета, в которой ось блока неподвижная. Предполагаем, что эта система отсчета инерциальная. Ось z системы координат в этой системе отсчёта направим вдоль оси вращения блока («от нас»).

«Мысленно» разбиваем систему на части и находим силы между частями системы в соответствие со вторым и третьим законами Ньютона.

При этом учтём, что нить невесомая (масса любой части нити равна нулю), поэтому, если кусок нити движется под действием (растягивающих) сил, то из второго закона Ньютона

В этой статье описывается важный раздел физики - "Кинематика и динамика вращательного движения".

Основные понятия кинематики вращательного движения

Вращательным движением материальной точки вокруг неподвижной оси называют такое движение, траекторией которого является окружность, находящаяся в плоскости перпендикулярной к оси, а центр ее лежит на оси вращения.

Вращательное движение твердого тела - это движение, при котором по концентрическим (центры которых лежат на одной оси) окружностям движутся все точки тела в соответствии с правилом для вращательного движения материальной точки.

Пусть произвольное твердое тело T совершает вращения вокруг оси O, которая перпендикулярна плоскости рисунка. Выберем на данном теле точку M. При вращении эта точка будет описывать вокруг оси O круг радиусом r .

Через некоторое время радиус повернется относительно исходного положения на угол Δφ.

За положительное направление поворота принято направление правого винта (по часовой стрелке). Изменение угла поворота со временем называется уравнением вращательного движения твердого тела:

φ = φ(t).

Если φ измерять в радианах (1 рад - это угол, соответствующий дуге, длиной равной ее радиусу), то длина дуги окружности ΔS, которую пройдет материальная точка M за время Δt, равна:

ΔS = Δφr.

Основные элементы кинематики равномерного вращательного движения

Мерой перемещения материальной точки за небольшой промежуток времени dt служит вектор элементарного поворота .

Угловая скорость материальной точки или тела - это физическая величина, которая определяется отношением вектора элементарного поворота к продолжительности этого поворота. Направление вектора можно определить правилом правого винта вдоль оси О. В скалярном виде:

ω = dφ/dt.

Если ω = dφ/dt = const, то такое движение называется равномерное вращательное движение. При нем угловую скорость определяют по формуле

ω = φ/t.

Согласно предварительной формуле размерность угловой скорости

[ω] = 1 рад/с.

Равномерное вращательное движение тела можно описать периодом вращения. Период вращения T - физическая величина, определяющая время, за которое тело вокруг оси вращения выполняет один полный оборот ([T] = 1 с). Если в формуле для угловой скорости принять t = T, φ = 2 π (полный один оборот радиуса r), то

ω = 2π/T,

поэтому период вращения определим следующим образом:

T = 2π/ω.

Число оборотов, которое за единицу времени совершает тело, называется частотой вращения ν, которая равна:

ν = 1/T.

Единицы измерения частоты: [ν]= 1/c = 1 c -1 = 1 Гц.

Сравнивая формулы для угловой скорости и частоты вращения, получим выражение, связывающее эти величины:

ω = 2πν.

Основные элементы кинематики неравномерного вращательного движения

Неравномерное вращательное движение твердого тела или материальной точки вокруг неподвижной оси характеризует его угловая скорость, которая изменяется со временем.

Вектор ε , характеризующий скорость изменения угловой скорости, называется вектором углового ускорения:

ε = dω/dt.

Если тело вращается, ускоряясь, то есть dω/dt > 0 , вектор имеет направление вдоль оси в ту же сторону, что и ω.

Если вращательное движение замедлено - dω/dt < 0 , то векторы ε и ω противоположно направлены.

Замечание . Когда происходит неравномерное вращательное движение, вектор ω может меняться не только по величине, но и по направлению (при повороте оси вращения).

Связь величин, характеризующих поступательное и вращательное движение

Известно, что длина дуги с углом поворота радиуса и его величиной связана соотношением

ΔS = Δφ r.

Тогда линейная скорость материальной точки, выполняющей вращательное движение

υ = ΔS/Δt = Δφr/Δt = ωr.

Нормальное ускорение материальной точки, что выполняет вращательно поступательное движение, определим следующим образом:

a = υ 2 /r = ω 2 r 2 /r.

Итак, в скалярном виде

a = ω 2 r.

Тангенциальное ускоренной материальной точки, которая выполняет вращательное движение

a = ε r.

Момент импульса материальной точки

Векторное произведение радиуса-вектора траектории материальной точки массой m i на ее импульс называется моментом импульса этой точки касательно оси вращения. Направление вектора можно определить, воспользовавшись правилом правого винта.

Момент импульса материальной точки (L i ) направлен перпендикулярно плоскости, проведенной через r i и υ i , и образует с ними правую тройку векторов (то есть при движении с конца вектора r i к υ i правый винт покажет направление вектора L i).

В скалярной форме

L = m i υ i r i sin(υ i , r i).

Учитывая, что при движении по кругу радиус-вектор и вектор линейной скорости для i-й материальной точки взаимно перпендикулярные,

sin(υ i , r i) = 1.

Так что момент импульса материальной точки для вращательного движения примет вид

L = m i υ i r i .

Момент силы, которая действует на i-ю материальную точку

Векторное произведение радиуса-вектора, который проведен в точку приложения силы, на эту силу называется моментом силы, действующей на i-ю материальную точку относительно оси вращения.

В скалярной форме

M i = r i F i sin(r i , F i).

Считая, что r i sinα = l i , M i = l i F i .

Величина l i , равная длине перпендикуляра, опущенного из точки вращения на направление действия силы, называется плечом силы F i .

Динамика вращательного движения

Уравнение динамики вращательного движения записывается так:

M = dL/dt.

Формулировка закона следующая: скорость изменения момента импульса тела, которое совершает вращение вокруг неподвижной оси, равна результирующему моменту относительно этой оси всех внешних сил, приложенных к телу.

Момент импульса и момент инерции

Известно, что для i-й материальной точки момент импульса в скалярной форме задается формулой

L i = m i υ i r i .

Если вместо линейной скорости подставить ее выражение через угловую:

υ i = ωr i ,

то выражение для момента импульса примет вид

L i = m i r i 2 ω.

Величина I i = m i r i 2 называется моментом инерции относительно оси i-й материальной точки абсолютно твердого тела, проходящей через его центр масс. Тогда момент импульса материальной точки запишем:

L i = I i ω.

Момент импульса абсолютно твердого тела запишем как сумму моментов импульса материальных точек, составляющих данное тело:

L = Iω.

Момент силы и момент инерции

Закон вращательного движения гласит:

M = dL/dt.

Известно, что представить момент импульса тела можно через момент инерции:

L = Iω.

M = Idω/dt.

Учитывая, что угловое ускорение определяется выражением

ε = dω/dt,

получим формулу для момента силы, представленного через момент инерции:

M = Iε.

Замечание. Момент силы считается положительным, если угловое ускорение, которым он вызван, больше нуля, и наоборот.

Теорема Штейнера. Закон сложения моментов инерции

Если ось вращения тела через центр масс его не проходит, то относительно этой оси можно найти его момент инерции по теореме Штейнера:
I = I 0 + ma 2 ,

где I 0 - начальный момент инерции тела; m - масса тела; a - расстояние между осями.

Если система, которая совершает обороты округ неподвижной оси, состоит из n тел, то суммарный момент инерции такого типа системы будет равен сумме моментов, ее составляющих (закон сложения моментов инерции).

Динамика вращательного движения твердого тела.

    Момент инерции.

    Момент силы. Основное уравнение динамики вращательного движения.

    Момент импульса.

    Момент инерции.

(Рассмотрим опыт со скатывающимися цилиндрами.)

При рассмотрении вращательного движения необходимо ввести новые физические понятия: момент инерции, момент силы, момент импульса.

Момент инерции является мерой инертности тела при вращательном движении тела вокруг неподвижной оси.

Момент инерции материальной точки относительно неподвижной оси вращения равен произведению её массы на квадрат расстояния до рассматриваемой оси вращения (рис.1):

Зависит только от массы материальной точки и её положения относительно оси вращения и не зависит от наличия самого вращения.

Момент инерции - скалярная и аддитивная величина

Момент инерции тела равен сумме моментов инерции всех его точек

.

В случае непрерывного распределения массы эта сумма сводится к интегралу:

,

где - масса малого объема тела ,  плотность тела, - расстояние от элемента до оси вращения.

Момент инерции является аналогом массы при вращательном движении. Чем больше момент инерции тела, тем труднее изменить угловую скорость вращаемого тела. Момент инерции имеет смысл только при заданном положении оси вращения.

Бессмысленно говорить просто о “моменте инерции”. Он зависит:

1)от положения оси вращения;

2)от распределения массы тела относительно оси вращения, т.е. от формы тела и его размеров.

Экспериментальным доказательством этого является опыт со скатывающимися цилиндрами.

Произведя интегрирование для некоторых однородных тел, можно получить следующие формулы (ось вращения проходит через центр масс тела):

    Момент инерции обруча (толщиной стенок пренебрегаем) или полого цилиндра:


    Момент инерции диска или сплошного цилиндра радиуса R:


    Момент инерции шара


    Момент инерции стержня


Если для тела известен момент инерции относительно оси, проходящей через центр масс, то момент инерции относительно любой оси, параллельной первой, находится по теореме Штейнера : момент инерции тела относительно произвольной оси равен моменту инерции J 0 относительно оси, параллельной данной и проходящей через центр масс тела, сложенному с произведением массы тела на квадрат расстояния между осями.

где d расстояние от центра масс до оси вращения.

Центр масс - воображаемая точка, положение которой характеризует распределение массы данного тела. Центр масс тела движется так же, как двигалась бы материальная точка той же массы под действием всех внешних сил, действующих на данное тело.

Понятие момента инерции было введено в механику отечественным ученым Л. Эйлером в середине XVIII века и с тех пор широко используется при решении многих задач динамики твердого тела. Значение момента инерции необходимо знать на практике при расчете различных вращающихся узлов и систем (маховиков, турбин, роторов электродвигателей, гироскопов). Момент инерции входит в уравнения движения тела (корабля, самолета, снаряда, и т.п.). Его определяют, когда хотят узнать параметры вращательного движения летательного аппарата вокруг центра масс при действии внешнего возмущения (порыва ветра и т.п.). Для тел переменной массы (ракеты) с течением времени изменяется масса и момент инерции.

2 .Момент силы.

Одна и та же сила может сообщать вращающемуся телу разные угловые ускорения в зависимости от её направления и точки приложения. Для характеристики вращающего действия силы вводят понятие момента силы.

Различают момент силы относительно неподвижной точки и относительно неподвижной оси. Моментом силы относительно точки О (полюса) называется векторная величина, равная векторному произведению радиус-вектора проведенного из точки О в точку приложения силы, на вектор силы:

Поясняющий это определение рис. 3 выполнен в предположении, что точка О и вектор лежат в плоскости чертежа, тогда вектор так же располагается в этой плоскости, а вектор  к ней и направлен от нас (как векторное произведение 2-х векторов; по правилу правого буравчика).

Модуль момента силы численно равен произведению силы на плечо:

где - плечо силы относительно точки О,  - угол между направлениями и, .

Плечо - кратчайшее расстояние от центра вращения до линии действия силы.

Вектор момента силы сонаправлен с поступательным движением правого буравчика, если его рукоятку вращать по направлению вращающего действия силы. Момент силы - аксиальный (свободный) вектор, он направлен вдоль оси вращения, не связан с определенной линией действия, его можно переносить в

пространстве параллельно самому себе.

Моментом силы относительно неподвижной оси Z называется проекция вектора на эту ось (проходящую через точку О).

Если на тело действуют несколько сил, то результирующий момент сил относительно неподвижной оси Z равен алгебраической сумме моментов относительно этой оси всех сил, действующих на тело.

Если сила, приложенная к телу, не лежит в плоскости вращения, её можно разложить на 2 компоненты: лежащую в плоскости вращения и  к ней F n . Как видно из рисунка 4, F n вращения не создает, а приводит только к деформации тела; вращение тела обусловлено только составляющей F  .

Вращающееся тело можно представить как совокупность материальных точек.

Выберем произвольно некоторую точку с массой m i , на которую действует сила, сообщая точке ускорение (рис. 5). Поскольку вращение создает только тангенциальная составляющая, для упрощения вывода направлена перпендикулярно оси вращения.

В этом случае

Согласно второму закону Ньютона: . Умножим обе части равенства на r i ;

,

где - момент силы, действующей на материальную точку,

Момент инерции материальной точки.

Следовательно, .

Для всего тела: ,

т.е. угловое ускорение тела прямо пропорционально моменту действующих на него внешних сил и обратно пропорционально его моменту инерции. Уравнение

(1) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси, или второй закон Ньютона для вращательного движения.

3 . Момент импульса.

При сравнении законов вращательного и поступательного движений усматривается аналогия.

Аналогом импульса является момент импульса. Понятие момента импульса также можно ввести относительно неподвижной точки и относительно неподвижной оси, однако в большинстве случаев его можно определить следующим образом. Если материальная точка вращается вокруг неподвижной оси, то её момент импульса относительно этой оси по модулю равен

где m i - масса материальной точки,

 i - её линейная скорость

r i - расстояние до оси вращения.

Т.к. для вращательного движения

где - момент инерции материальной точки относительно этой оси.

Момент импульса твердого тела относительно неподвижной оси равен сумме моментов импульсов всех его точек относительно этой оси:

где - момент инерции тела.

Т.о., момент импульса твердого тела относительно неподвижной оси вращения равен произведению его момента инерции относительно этой оси на угловую скорость и сонаправлен с вектором угловой скорости.

Продифференцируем уравнение (2) по времени:

Уравнение (3) - ещё одна форма основного уравнения динамики вращательного движения твердого тела относительно неподвижной оси: производная момента

импульса твердого тела относительно неподвижной оси вращения равна моменту внешних сил относительно той же оси

Это уравнение является одним из важнейших уравнений ракетодинамики. В процессе движения ракеты положение ее центра масс непрерывно изменяется, вследствие чего возникают различные моменты сил: лобового сопротивления, аэродинамической силы, сил создаваемых рулем высоты. Уравнение вращательного движения ракеты под действием всех приложенных к ней моментов сил совместно с уравнениями движения центра масс ракеты и уравнениями кинематики с известными начальными условиями позволяют определить положение ракеты в пространстве в любой момент времени.