Как были взломаны шифровальные коды гитлеровской германии. Алан Тьюринг — профессор из Кембриджа, сумевший взломать код «Энигмы Взломал код энигма

«Если бы не навахо, мы бы никогда не взяли Иводзиму» . Тихоокеанский остров Иводзима известен тем, что там произошло одно из самых кровопролитных сражений в истории Второй мировой войны. Искушённый читатель может подумать, что приведённые выше слова принадлежат любителю вестернов и фильмов о войне. На самом же деле они были произнесены ветераном Иводзимы майором Говардом Коннором, офицером-сигнальщиком 5-й дивизии морской пехоты США. С его мнением сегодня соглашаются военные историки и тактики.

Коннор имел в виду прославленных радистов - индейцев племени Навахо, которых чествовали в 1992 году в Пентагоне за уникальный и существенный вклад в победу США на Тихом океане.

Японцы слыли искусными дешифровщиками, что ставило перед командованием США на тихоокеанском театре военных действий почти неразрешимую проблему. По словам шефа японской разведки генерал-лейтенанта Сейцо Арисуэ, японские специалисты свободно разгадывали любые шифры армии и военно-воздушных сил США - кроме шифра, который использовался в морской пехоте.

Дело обстояло так: в 1942 году сын миссионера Филип Джонстон убедил командование морской пехоты в том, что язык навахо - индейского племени юго-запада Америки - идеально подходил в качестве основы для неразрешимого шифра. Джонстон вырос в резервации навахо и был одним из немногих «чужаков», которые говорили на их языке свободно.

Хотя язык навахо не имеет письменности - ни алфавита, ни каких либо символов, - он ни в малейшей степени не может быть назван «примитивным, не до конца развитым» языком. (Разумеется, это не вызовет удивления у того, кто знает подлинную историю мира, записанную в Библии, и понимает, что «примитивных языков» попросту не существует). На самом деле, язык навахо отличался необычайной сложностью; его структура и тональность делали его непостижимым для любого, кто не принадлежал к племени навахо или не прошёл длительного и трудного курса обучения. В то время всего лишь около 30 «чужаков» во всём мире говорили на языке навахо, и японцев среди них не было.

В мае 1942 г. первая группа навахо из 29 человек прибыла на специальную базу и занялась разработкой шифра. Их основной задачей была передача боевой информации и приказов по телефону и рации. Проведённые испытания показали, что навахо могут закодировать, передать и расшифровать трёхстрочное сообщение на английском языке за 20 секунд - в 90 раз быстрее, чем требовалось машинам того времени.

Суть шифра сводилась к следующему: каждая буква английского слова передавалось как слово на навахо, которое в переводе на английском начиналось с этой буквы. Так, буква «а» могла передаваться несколькими словами на навахо, например: «тсе-нилл» (axe, топор), «вол-ла-чи» (ant, муравей) и «бе-ла-сана» (apple, яблоко). Для большей скорости передачи некоторые военные термины определялись одним словом на навахо. Так, «беш-ло» (Железная Рыба) обозначало подводную лодку, а «да-хе-ти-хи» (колибри) - истребитель.

В самом сердце битвы за Иводзиму шесть радистов-навахо в первые два дня сражения работали круглосуточно, не покладая рук. Эти шестеро отправили и получили более 800 сообщений и не допустили ни одной ошибки.

В общей сложности на тихоокеанском театре служило около 400 индейцев-шифровальщиков. Их умение, скорость и точность вошли в легенду. С 1942 по 1945 год они участвовали в каждом штурме морской пехоты на Тихом океане. Из-за того, что код навахо имел большую ценность, он оставался засекречен и после Второй мировой войны. Поэтому герои-радисты долгое время оставались «в тени», а их подвиг оставался неизвестным большинству людей.

Можно провести интересные параллели между этой историей о навахо и биологией. Внутри не только каждого из нас, но и всех живых существ присутствует код, написанный языком химических соединений вдоль «хребта» всем известной молекулы ДНК. В этом коде , обеспечивающая жизнедеятельность всех организмов. Как подобный код мог появиться в эволюционном сценарии происхождения видов (в котором не может быть ничего таинственного) - одна из самых больших загадок, над которой ломают головы почтенные эволюционисты. Следуя путём своих убеждений, они натыкаются на две непреодолимые преграды.

Во-первых, истинная информация не вырабатывается в результате естественных процессов (т.е. вне работы мысли - или программы, которая происходит из разумного источника). Если кто-то утверждает обратное, попросите его привести пример и точно сформулировать определение информации. Рассказы о «чём-то наподобие» и «сходных аналогиях» исключаются, - только документированные примеры, основанные на фактах. Возможно, самыми точными были бы показания, сделанные в результате наблюдений, - но если бы такие наблюдения были зафиксированы на самом деле, наблюдателям была бы обеспечена Нобелевская премия!

Во-вторых, (и это непосредственно связано с нашим рассказом о военных достижениях навахо), любой код бесполезен, если получатель не знает как его расшифровать.

Следовательно, нам необходимо допустить, что в воображаемой «первобытной клетке», из которой, согласно эволюционным воззрениям, возникла жизнь на «первобытной Земле», каким-то совершенно непонятным, таинственным образом возникла информация для производства одного функционального протеина. Естественный отбор здесь ничем не в силах нам помочь: для него необходимо изначальное наличие самовоспроизводящегося организм. Таким образом, приходится считать расстановку тысяч «букв» в определённой последовательности чистой случайностью. Это предположение само по себе абсурдно по причине его предельной невероятности.

Но даже если допустить возможность возникновения такой «стартовой площадки», существование возникшего кода будет совершенно бесполезным без уже имеющегося сложного механизма, способного распознавать все химические «буквы» молекулы ДНК и одновременно переводить их в соответствующие аминокислоты. Японцы без труда получили доступ к сообщениям навахо, но эти сообщения оказались для них бесполезны. Без «механизма перевода» (знания языка и умения правильно его применить) послания представляли собой череду бессмысленных звуков.

Таким образом, само представление о молекуле, эволюционировавшей в человека, не имеет никаких оснований и бессильно что-либо объяснить даже при самом богатом воображении. Все усилия разгадать эту эволюционную загадку обречены на неудачу - точно так же, как провалились попытки гитлеровской Германии и её союзников6 взломать известный сегодня шифр навахо И, что примечательно, причина этих двух неудач - одна и та же.

ССЫЛКИ И КОММЕНТАРИИ:

РАДИСТЫ-ШИФРОВАЛЬЩИКИ

Языки американских индейцев неоднократно использовались для шифровки сообщений. Так, во время Первой мировой войны против Германии восемь членов племени чоктау помогали армии США шифровать военные донесения.

Во избежание разоблачения не существовало ни одного письменного документа с кодом навахо. 400 с лишним оригинальных обозначений для военных терминов, отсутствовавших в языке навахо (например, «подводная лодка»), не должны были передаваться по буквам и заучивались наизусть.

Самое важное в ведении войны - это безопасность передачи информации. Высокопоставленные военные офицеры убеждены, что без радистов-навахо Вторая мировая война, а с ней и весь ход истории могли бы иметь совершенно иной исход. Представьте, что было бы, если б родители Филипа Джонстона не пожертвовали всем ради служения и благовествования племени навахо!..

Разработка семейства шифровальных машин «Энигма» стартовала сразу после Первой мировой, еще в 1918 году. Немец Артур Шербиус получил патент на роторную шифровальную машину, которая, по сути, являлась первым вариантом «Загадки» (так Enigma переводится с немецкого). В 1923 Шербиус вместе с компаньоном организовал предприятие со сложнопроизносимым названием Chiffriermaschinen Aktiengesellschaft, наладившее серийный выпуск шифровальных аппаратов.

Первые две модели «Энигмы», A и B, пользовались умеренным успехом. Настоящим прорывом в 1925 году стала модель С - с рефлектором, гораздо более компактная, чем ее предшественники. Enigma C весила всего лишь 12 кг при размере 28 на 34 на 15 см, тогда как предыдущие модели весили около 50 кг, имея габариты 65 на 45 на 35 сантиметров. Модель С практически сразу стали использовать на судах немецкого флота.

Enigma С. Изображение: Crypto Museum

В 1928 году военные специалисты по заказу Вермахта переработали конструкцию гражданских шифровальных машин, сконструировав модель Enigma-G, которую двумя годами позже модифицировали в версию Enigma-I. Именно этот аппарат 1930 года стал основой для множества версий, которые во время Второй Мировой использовали самые разные военные службы. Существовали варианты Enigma с количеством роторов от 3 до 8. Правда, восьмироторная версия, созданная специально для высших армейских структур, довольно быстро была выведена из эксплуатации из-за ненадежности.

«Слив», не превратившийся во взлом

Хотя «Энигма» была одобрена высшими чинами немецкой армии в том числе и за свою эффективность и надежность, секретность шифруемых на ней сообщений оказалась под угрозой очень скоро. Виной тому стал агент Аше - он же Ганс-Тило Шмидт, с 1931 года сотрудник шифровального бюро минобороны Германии - агент французской разведки. Шмидт передавал французам вышедшие из употребления коды, которые обязан был уничтожать, а также «слил» инструкцию по использованию военного варианта шифровальной машины.

Лист с кодами шифрования «Энигмы». Фото: Telenet

К информации «агента Аше» французская разведка отнеслась довольно прохладно. Иметь своего агента в стане потенциального противника было полезно, но «Энигма» считалась настолько надежной машиной, что взломать ее во Франции даже не попытались . Зато в Польше, которой французы передали материалы от своего немецкого агента, нашлись гении криптографии, разобравшиеся с шифром.

«Польский Тьюринг»

«Надежную машину» взломал Мариан Реевский, 27-летний математик, окончивший секретные курсы криптографии. Хотя в польском Бюро шифрования он работал не один, работать над расшифровкой Enigma I доверили только Реевскому. Мариан сразу же активно начал искать уязвимости ключа сообщений, выбирая из ежедневных шифрограмм первые шесть букв и составляя таблицы соответствий.

Сначала ему удалось обнаружить 4 повторяющиеся последовательности букв в шифрах. А затем благодаря информации о том, что у «Энигмы» только три барабана, а начальная настройка состоит из трех букв латинского алфавита, Реевский установил количество возможных кодовых цепочек. Оно оказалось во много раз меньше, чем предполагали ранее: 3! 263 против 26!. Это дало возможность в течение года составить полный каталог всех цепочек.

Благодаря Реевскому стало понятно, что количество кодовых цепочек в 3 824 262 831 196 002 461 538 раз меньше, чем предполагалось ранее.

Мариан Реевский. Фото: Poland

Видимо, догадавшись о том, что их шифры могут быть прочитаны, немецкие криптографы начали гораздо чаще менять конфигурацию положения роторов машины. А осенью 1938 года принцип шифрования был изменен, что сделало невозможным распознавание шифрограмм на основе прежних методов. Однако Реевский со своими коллегами раскусил эту уловку, состоявшую в так называемом удвоении ключа и являвшуюся, по сути, криптографической ошибкой.

Уже через несколько месяцев поляки создали аппарат под названием «Бомба Реевского» , названный так то ли за характерный звук тиканья при работе, то ли в честь круглых пирожных, которые Мариан очень любил. Устройство проводило поиск по шаблону, учитывая, что парам первой и четвертой, второй и пятой, третьей и шестой букв шифрованного текста соответствовали одинаковые буквы текста нешифрованного.

Криптологическая «бомба» Реевского. 1 - роторы для подбора ключей, 2 - двигатель для вращения роторов, 3 - индикаторная тумба, сигнализирующая об успешном подборе кода. Изображение: Ministerstwo Edukacji Narodowej

Именно работы Мариана Реевского стали основой успеха Алана Тьюринга. Хотя нельзя сказать, что британец всего лишь присвоил себе чужой успех. Да, поляки в 1939 году при нападении войск Третьего Рейха передали все наработки местных дешифровщиков агентам британской разведки. Но методика Реевского к этому времени была бесполезна для работы с «Энигмой».

Погоня за ошибками и перебор вариантов

Уже в декабре 1938 года к трем роторам машины добавили еще два, и количество возможных позиций роторов увеличилось в 10 раз. Вместо 6 «бомб Реевского» полякам уже тогда требовалось 60 дешифрующих устройств. А в мае 1940 года немцы отказались от идеи удвоения ключа, и сам концепт польского дешифрующего аппарата оказался бесполезным. Так что Тьюринг проделал огромный пласт работы, чтобы разгадать усовершенствованную «Загадку» - тем более что польские криптоаналитики уничтожили «бомбы» в сентябре 1939 года, после вторжения немецких войск в страну.

Во время загрузки произошла ошибка. Принцип работы машины Тюринга

Реевский был гением, но допустил ошибку, постоянно выискивая чужие ошибки. Методика польского дешифровщика состояла в выявлении уязвимостей «Энигмы». Но сами немцы постоянно совершенствовали свою машину, вынуждая молодого математика все время находиться в позиции догоняющего.

Англичанам уже не подходила «бомба Реевского», которая для подбора ключа использовала перебор всех возможных комбинаций.

Тьюринг предложил более простой и менее трудозатратный способ расшифровки: учитывать в работе то, что часть исходного текста известна . Несмотря на хитроумность немецкого шифра, несмотря на все предосторожности, немецкие солдаты чаще всего общались между собой короткими стереотипными фразами, которые можно было «узнать». Точное место отдельных фраз в шифровке можно было определить механическим перебором 26 букв латинского алфавита. Дополнительным облегчением было и то, что в шифре «Энигмы» ни одна из букв исходного сообщения не кодировалась той же самой буквой.

«Бомба» для Третьего Рейха

На основе этой методики были разработаны «Бомбы Тьюринга». Первую запустили 18 марта 1940 года - для каждого возможного исходного положения роторов она выполняла сверку с известным фрагментом текста и формировала логические предположения. Если в этих предположениях обнаруживались нестыковки, вариант «отбраковывался». Таким образом, из огромного множества вариантов - 10 19 возможных комбинаций для обычного варианта «Энигмы» или 10 22 для версии, использовавшейся подводниками - оставались лишь несколько логически непротиворечивых, на основе которых машина и подбирала шифр.Команда дешифраторов круглосуточно, в несколько смен работала в роскошном особняке под названием Блетчли-Парк в городке Милтон Кейнс в 72 км от Лондона. Сотрудники обрабатывали тысячи сообщений ежедневно, выделяя в шифрограммах так называемые подсказки - приветствия, цифры, повторяющиеся куски текста. На основе этих фрагментов машина и строила свои предположения.

Иногда случалось так, что информации оказывалось недостаточно для разгадки шифра. Особенно критично это было накануне крупных операций немцев. Тогда британские войска прибегали к приему под названием «гарденинг» (возделывание). Для этого британские ВМС проводили демонстративные минирования отдельных участков моря, а в Блетчли-Парке затем определяли известный текст на основе докладов противника о разминированиях.

Гений, которого оценили слишком поздно

Тьюринг сделал все для того, чтобы Англия не сдалась под натиском немецкого флота и авиации, а у СССР в союзниках осталась не только Америка. Как сказал однажды один из коллег Алана: «Не берусь утверждать, что мы выиграли войну благодаря Тьюрингу. Однако без него могли бы ее и проиграть».

Алан Тьюринг считается одной из самых важных фигур в истории криптографии. Но его работа по дешифровке «Энигмы» едва ли повлияла на развитие данной науки - как бы странно это ни звучало. Все дешифровальные аппараты из Блетчли-Парка после Второй Мировой были уничтожены, а сам факт попыток дешифровки - успешных и не очень - держали в секрете до 1970 годов. Сам ученый уже в 1952 году из неизвестного героя превратился в объект публичного позора: Тьюринга обвинили в гомосексуализме и заставили проходить курс гормональной терапии, от которого «победитель Энигмы» впал в глубокую депрессию и через два года покончил жизнь самоубийством.

В 2009 году Алан Тьюринг был признан «одной из самых известных жертв гомофобии в Великобритании». В 2013 году королева Великобритании Елизавета II официально помиловала Тьюринга, который был обвинен в «непристойности».

И тем не менее: сегодня имя Тьюринга знакомо большинству людей. В честь гения назван принцип полноты по Тьюрингу, тест Тьюринга и машина Тьюринга, а также одна из самых престижных премий в области информатики. В кино Алана сыграл жутко модный Бенедикт Камбербэтч, а в Манчестере ему поставлен памятник.

Почти в любое время года английская деревня выглядит одинаково: зеленые луга, коровы, средневекового вида домики и широкое небо - иногда серое, иногда - ослепительно-голубое. Оно как раз переходило от первого режима к более редкому второму, когда пригородная электричка мчала меня до станции Блетчли. Сложно представить, что в окружении этих живописных холмов закладывались основы компьютерной науки и криптографии. Впрочем, предстоящая прогулка по интереснейшему музею развеяла все возможные сомнения.

Такое живописное место, конечно, было выбрано англичанами не случайно: неприметные бараки с зелеными крышами, расположенные в глухой деревне, - это как раз то, что было нужно, чтобы спрятать сверхсекретный военный объект, где непрерывно трудились над взломом шифров стран «оси». Пусть со стороны Блетчли-парк и не впечатляет, но та работа, которую здесь выполняли, помогла переломить ход войны.

Криптохатки

В военные времена в Блетчли-парк въезжали через главные ворота, предъявляя охране пропуск, а теперь покупают билетик на проходной. Я задержался там еще чуть-чуть, чтобы посмотреть на прилегающий магазин сувениров и временную экспозицию, посвященную технологиям разведки Первой мировой (кстати, тоже интереснейшая тема). Но главное ждало впереди.

Собственно Блетчли-парк - это около двадцати длинных одноэтажных построек, которые на английском называют hut, а на русский обычно переводят как «домик». Я про себя называл их «хатками», совмещая одно с другим. Помимо них, есть особняк (он же Mansion), где работало командование и принимались высокие гости, а также несколько вспомогательных построек: бывшие конюшни, гараж, жилые дома для персонала.

Те самые домики Усадьба во всей красе Внутри усадьба выглядит побогаче, чем хатки

У каждого домика - свой номер, причем номера эти имеют историческое значение, вы обязательно встретите их в любом рассказе о Блетчли-парке. В шестой, к примеру, поступали перехваченные сообщения, в восьмом занимались криптоанализом (там и работал Алан Тьюринг), в одиннадцатом стояли вычислительные машины - «бомбы». Четвертый домик позже выделили под работу над вариантом «Энигмы», который использовался на флоте, седьмой - под японскую вариацию на тему «Энигмы» и другие шифры, в пятом анализировали передачи, перехваченные в Италии, Испании и Португалии, а также шифровки немецкой полиции. Ну и так далее.

Посещать домики можно в любом порядке. Обстановка в большинстве из них очень похожая: старая мебель, старые вещи, истрепанные тетради, плакаты и карты времен Второй мировой. Все это, конечно, не лежало здесь восемьдесят лет: домики сначала переходили от одной государственной организации к другой, потом были заброшены, и только в 2014 году реставраторы скрупулезно восстановили их, спася от сноса и превратив в музей.

К этому, как принято в Англии, подошли не только тщательно, но и с выдумкой: во многих комнатах из спрятанных динамиков раздаются голоса актеров и звуки, которые создают впечатление, будто вокруг кипит работа. Заходишь и слышишь стук пишущей машинки, чьи-то шаги и радио вдалеке, а затем «подслушиваешь» чей-то оживленный разговор о недавно перехваченной шифровке.

Но настоящая диковинка - это проекции. Например, вот этот мужчина, который как бы сидит за столом, поприветствовал меня и вкратце рассказал о местных порядках.

Во многих комнатах царит полумрак - чтобы лучше были видны проекции

Интереснее всего, конечно, было посмотреть на рабочий стол Алана Тьюринга. Его кабинет находится в восьмом домике и выглядит очень скромно.

Примерно так выглядел стол Алана Тьюринга

Ну а на само творение Тьюринга - машину для расшифровки «Энигмы» - можно взглянуть в доме номер 11 - там же, где в свое время была собрана самая первая модель «бомбы».

Криптологическая бомба

Возможно, для вас это будет новостью, но Алан Тьюринг был не первым, кто расшифровал «Энигму» методом механического перебора. Его работе предшествует исследование польского криптографа Мариана Реевского. Кстати, именно он назвал машину для расшифровки «бомбой».

Польская «бомба» была значительно проще. Обратите внимание на роторы сверху

Почему «бомба»? Есть несколько разных версий. Например, по одной так якобы назывался любимый Реевским и коллегами сорт мороженого, который продавали в кафе неподалеку от бюро шифрования польского генштаба, и они позаимствовали это название. Куда более простое объяснение - в том, что в польском языке слово «бомба» может использоваться для восклицания вроде «эврика!». Ну и совсем простой вариант: машина тикала подобно бомбе.

Незадолго до захвата Польши Германией польские инженеры передали англичанам все наработки, связанные с декодированием немецких шифров, в том числе чертежи «бомбы», а также работающий экземпляр «Энигмы» - не немецкой, а польского клона, который они успели разработать до вторжения. Остальные наработки поляков были уничтожены, чтобы разведка Гитлера ничего не заподозрила.

Проблема заключалась в том, что польский вариант «бомбы» был рассчитан только на машину «Энигма I» с тремя фиксированными роторами. Еще до начала войны немцы ввели в эксплуатацию усовершенствованные варианты «Энигмы», где роторы заменялись каждый день. Это сделало польский вариант полностью непригодным.

Если вы смотрели «Игру в имитацию», то уже неплохо знакомы с обстановкой в Блетчли-парке. Однако режиссер не удержался и сделал несколько отступлений от реальных исторических событий. В частности, Тьюринг не создавал прототип «бомбы» собственноручно и никогда не называл ее «Кристофером».

Популярный английский актер Криптокод Подбирач в роли Алана Тьюринга

На основе польской машины и теоретических работ Алана Тьюринга инженеры British Tabulating Machine Company создали те «бомбы», которые поставлялись в Блетчли-парк и на другие секретные объекты. К концу войны машин было уже 210, однако с окончанием военных действий все «бомбы» уничтожили по приказу Уинстона Черчилля.

Зачем британским властям понадобилось уничтожать такой прекрасный дата-центр? Дело в том, что «бомба» не является универсальным компьютером - она предназначена исключительно для декодирования сообщений, зашифрованных «Энигмой». Как только нужда в этом отпала, машины тоже стали ненужными, а их компоненты можно было распродать.

Другой причиной, возможно, было предчувствие, что Советский Союз в дальнейшем окажется не лучшим другом Великобритании. Что, если в СССР (или где-нибудь еще) стали бы использовать технологию, похожую на «Энигму»? Тогда лучше никому не демонстрировать возможность вскрывать ее шифры быстро и автоматически.

С военных времен сохранилось только две «бомбы» - они были переданы в GCHQ, Центр правительственной связи Великобритании (считай, современный аналог Блетчли-парка). Говорят, они были демонтированы в шестидесятые годы. Зато в GCHQ милостиво согласились предоставить музею в Блетчли старые чертежи «бомб» - увы, не в лучшем состоянии и не целиком. Тем не менее силами энтузиастов их удалось восстановить, а затем создать и несколько реконструкций. Они-то сейчас и стоят в музее.

Занятно, что во время войны на производство первой «бомбы» ушло около двенадцати месяцев, а вот реконструкторы из BCS Computer Conservation Society , начав в 1994 году, трудились около двенадцати лет. Что, конечно, неудивительно, учитывая, что они не располагали никакими ресурсами, кроме своих сбережений и гаражей.

Как работала «Энигма»

Итак, «бомбы» использовались для расшифровки сообщений, которые получались на выходе после шифрования «Энигмой». Но как именно она это делает? Подробно разбирать ее электромеханическую схему мы, конечно, не будем, но общий принцип работы узнать интересно. По крайней мере, мне было интересно послушать и записать этот рассказ со слов работника музея.

Устройство «бомбы» во многом обусловлено устройством самой «Энигмы». Собственно, можно считать, что «бомба» - это несколько десятков «Энигм», составленных вместе таким образом, чтобы перебирать возможные настройки шифровальной машины.

Самая простая «Энигма» - трехроторная. Она широко применялась в вермахте, и ее дизайн предполагал, что ей сможет пользоваться обычный солдат, а не математик или инженер. Работает она очень просто: если оператор нажимает, скажем, P, под одной из букв на панели загорится лампочка, например под буквой Q. Остается только перевести в морзянку и передать.

Важный момент: если нажать P еще раз, то очень мал шанс снова получить Q. Потому что каждый раз, когда ты нажимаешь кнопку, ротор сдвигается на одну позицию и меняет конфигурацию электрической схемы. Такой шифр называется полиалфавитным.

Посмотрите на три ротора наверху. Если вы, например, вводитие Q на клавиатуре, то Q сначала заменится на Y, потом на S, на N, потом отразится (получится K), снова трижды изменится и на выходе будет U. Таким образом, Q будет закодирована как U. Но что, если ввести U? Получится Q! Значит, шифр симметричный. Это было очень удобно для военных применений: если в двух местах имелись «Энигмы» с одинаковыми настойками, можно было свободно передавать сообщения между ними.

У этой схемы, правда, есть большой недостаток: при вводе буквы Q из-за отражения в конце ни при каких условиях нельзя было получить Q. Немецкие инженеры знали об этой особенности, но не придали ей особого значения, а вот британцы нашли возможность эксплуатировать ее. Откуда англичанам было известно о внутренностях «Энигмы»? Дело в том, что в ее основе лежала совершенно не секретная разработка. Первый патент на нее был подан в 1919 году и описывал машину для банков и финансовых организаций, которая позволяла обмениваться шифрованными сообщениями. Она продавалась на открытом рынке, и британская разведка успела приобрести несколько экземпляров. По их же примеру, кстати, была сделана и британская шифровальная машина Typex, в которой описанный выше недостаток исправлен.

Самая первая модель Typex. Целых пять роторов!

У стандартной «Энигмы» было три ротора, но всего можно было выбрать из пяти вариантов и установить каждый из них в любое гнездо. Именно это и отражено во втором столбце - номера роторов в том порядке, в котором их предполагается ставить в машину. Таким образом, уже на этом этапе можно было получить шестьдесят вариантов настроек. Рядом с каждым ротором расположено кольцо с буквами алфавита (в некоторых вариантах машины - соответствующие им числа). Настройки для этих колец - в третьем столбце. Самый широкий столбец - это уже изобретение немецких криптографов, которого в изначальной «Энигме» не было. Здесь приведены настройки, которые задаются при помощи штекерной панели попарным соединением букв. Это запутывает всю схему и превращает ее в непростой пазл. Если посмотреть на нижнюю строку нашей таблицы (первое число месяца), то настройки будут такими: в машину слева направо ставятся роторы III, I и IV, кольца рядом с ними выставляются в 18, 24 и 15, а затем на панели штекерами соединяются буквы N и P, J и V и так далее. С учетом всех этих факторов получается около 107 458 687 327 300 000 000 000 возможных комбинаций - больше, чем прошло секунд с Большого взрыва. Неудивительно, что немцы считали эту машину крайне надежной.

Существовало множество вариантов «Энигмы», в частности на подводных лодках использовался вариант с четырьмя роторами.

Взлом «Энигмы»

Взломать шифр, как водится, позволила ненадежность людей, их ошибки и предсказуемость.

Руководство к «Энигме» говорит, что нужно выбрать три из пяти роторов. Каждая из трех горизонтальных секций «бомбы» может проверять одно возможное положение, то есть одна машина единовременно может прогнать три из шестидесяти возможных комбинаций. Чтобы проверить все, нужно либо двадцать «бомб», либо двадцать последовательных проверок.

Однако немцы сделали приятный сюрприз английским криптографам. Они ввели правило, по которому одинаковое положение роторов не должно повторяться в течение месяца, а также в течение двух дней подряд. Звучит так, будто это должно было повысить надежность, но в реальности привело к обратному эффекту. Получилось, что к концу месяца количество комбинаций, которые нужно было проверять, значительно уменьшалось.

Вторая вещь, которая помогла в расшифровке, - это анализ трафика. Англичане слушали и записывали шифрованные сообщения армии Гитлера с самого начала войны. О расшифровке тогда речь не шла, но иногда бывает важен сам факт коммуникации плюс такие характеристики, как частота, на которой передавалось сообщение, его длина, время дня и так далее. Также при помощи триангуляции можно было определить, откуда было отправлено сообщение.

Хороший пример - передачи, которые поступали с Северного моря каждый день из одних и тех же локаций, в одно и то же время, на одной и той же частоте. Что это могло быть? Оказалось, что это метеорологические суда, ежедневно славшие данные о погоде. Какие слова могут содержаться в такой передаче? Конечно, «прогноз погоды»! Такие догадки открывают дорогу для метода, который сегодня мы называем атакой на основе открытых текстов, а в те времена окрестили «подсказками» (cribs).

Поскольку мы знаем, что «Энигма» никогда не дает на выходе те же буквы, что были в исходном сообщении, нужно последовательно сопоставить «подсказку» с каждой подстрокой той же длины и посмотреть, нет ли совпадений. Если нет, то это строка-кандидат. Например, если мы проверяем подсказку «погода в Бискайском заливе» (Wettervorhersage Biskaya), то сначала выписываем ее напротив шифрованной строки.

Q F Z W R W I V T Y R E * S* X B F O G K U H Q B A I S E Z

W E T T E R V O R H E R * S* A G E B I S K A Y A

Видим, что буква S шифруется сама в себя. Значит, подсказку нужно сдвинуть на один символ и проверить снова. В этом случае совпадать будет сразу несколько букв - двигаем еще. Совпадает R. Двигаем еще дважды, пока не наталкиваемся на потенциально правильную подстроку.

Если бы мы имели дело с шифром подстановки, то на этом можно было бы и закончить. Но поскольку это полиалфавитный шифр, нам нужны настройки и исходные положения роторов «Энигмы». Именно их и подбирали при помощи «бомб». Для этого пары букв нужно сначала пронумеровать.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R W I V T Y R E S X B F O G K U H Q B A I S E

W E T T E R V O R H E R S A G E B I S K A Y A

А затем на основе этой таблицы составить так называемое «меню» - схему, по которой видно, какая буква исходного сообщения (то есть «подсказки») в какую букву предположительно шифруется и в какой позиции. По этой схеме и настраивается «бомба».

Каждый из барабанов может принять одно из 26 положений - по одному на каждую перебираемую букву алфавита. За каждым из барабанов - 26 контактов, которые толстыми шлейфами соединяются таким образом, чтобы машина искала настройки штекерной панели, дающие последовательные совпадения букв шифрованной строки с подсказкой.

Поскольку строение «бомбы» не учитывает устройство коммутаций внутри «Энигмы», она по ходу работы выдает несколько вариантов, которые оператор должен проверить. Часть из них не подойдет просто потому, что в «Энигме» к одному гнезду можно подключить только один штекер. Если настройки не подходят, оператор запускает машину снова, чтобы получить следующий вариант. Примерно за пятнадцать минут «бомба» переберет все варианты для выбранной позиции барабанов. Если она угадана верно, то остается подобрать настройки колец - уже без автоматики (не будем погружаться в подробности). Затем на модифицированных для совместимости с «Энигмой» английских машинах Typex шифровки переводили в чистый текст.

Таким образом, оперируя целым парком из «бомб», британцы к концу войны каждый день получали актуальные настройки еще до завтрака. Всего у немцев было около полусотни каналов, по многим из которых передавались гораздо более интересные вещи, чем прогноз погоды.

Разрешается трогать руками

В музее Блетчли-парка можно не только смотреть по сторонам, но и прикоснуться к дешифровке собственноручно. В том числе - при помощи столов-тачскринов. Каждый из них дает свое задание. В этом, например, предлагается совмещать листы Банбури (Banburismus). Это ранний метод дешифровки «Энигмы», который применялся до создания «бомб». Увы, таким способом расшифровать что-то в течение суток было невозможно, а в полночь все успехи превращались в тыкву из-за очередной смены настроек.

Муляж «дата-центра» в Hut 11

Что же стоит в домике номер 11, где раньше была «серверная», если все «бомбы» были уничтожены в прошлом веке? Честно говоря, я все же в глубине души надеялся зайти сюда и обнаружить все в том же виде, что и когда-то. Увы, нет, но зал все равно не пустует.

Здесь стоят вот такие железные конструкции с фанерными листами. На одних - фотографии «бомб» в натуральную величину, на других - цитаты из рассказов тех, кто здесь работал. Ими были в основном женщины, в том числе из WAF - женской службы ВВС Великобритании. Цитата на снимке говорит нам о том, что переключение шлейфов и присмотр за «бомбами» был вовсе не легкой задачей, а изматывающим ежедневным трудом. Кстати, между муляжами спрятана очередная серия проекций. Девушка рассказывает своей подруге о том, что понятия не имела, где ей предстоит служить, и полностью поражена происходящим в Блетчли. Что ж, я был тоже поражен необычным экспонатом!

В общей сложности я провел в Блетчли-парке пять часов. Этого едва-едва хватило, чтобы хорошенько посмотреть центральную часть и мельком - все остальное. Было настолько интересно, что я даже не заметил, как прошло время, пока ноги не начали ныть и проситься обратно - если не в гостиницу, то хотя бы в электричку.

А помимо домиков, полутемных кабинетов, восстановленных «бомб» и длинных стендов с сопроводительными текстами, было на что посмотреть. Про зал, посвященный шпионажу во время Первой мировой, я уже упомянул, был еще зал про дешифровку «Лоренца» и создание компьютера Colossus . Кстати, в музее я обнаружил и сам «Колосс», вернее ту часть, что успели построить реконструкторы.

Самых выносливых уже за территорией Блетчли-парка ждет небольшой музей компьютерной истории, где можно ознакомиться с тем, как вычислительная техника развивалась после Тьюринга. Туда я тоже заглянул, но прошел уже быстрым шагом. На BBC Micro и «Спектрумы» я уже насмотрелся в других местах - вы можете сделать это, например, на питерском фестивале Chaos Constructions. А вот живую «бомбу» где попало не встретишь.

По материалам диссертации «Шифровальные машины и приборы для расшифровки во время Второй мировой войны», защищенной в университете г. Хемниц (ФРГ) в 2004г.

Введение. Для широкой публики слово «Энигма» (по-гречески - загадка) является синонимом понятий «шифровальная машина» и «взлом кода», о чем позаботились фильмы про подводные лодки и аналогичные романы, имеющие мало общего с действительностью. О том, что были и другие шифровальные машины, для «взлома» которых создавались специальные машины для расшифровки, и о тех последствиях, какие это имело во Второй Мировой войне, об этом широкой публике известно мало.

И не удивительно: об этом имеется слишком мало информации в популярных изданиях. А имеющаяся там информация обычно либо недостаточна, либо недостоверна. Это тем более заслуживает сожаления, потому что взлом шифровальных кодов имел исключительно важное историческое значение для хода войны, так как союзники (по антигитлеровской коалиции) благодаря полученной таким образом информации имели существенные преимущества, они смогли компенсировать некоторые упущения первой половины войны и смогли оптимально использовать свои ресурсы во второй половине войны. По мнению англо-американских историков, если бы не взлом немецких шифровальных кодов, война длилась бы на два года дольше, потребовались бы дополнительные жертвы, также возможно, что на Германию была бы сброшена атомная бомба.

Но мы этим вопросом заниматься не будем, а ограничимся научными, техническими и организационными обстоятельствами, которые способствовали раскрытию немецких шифровальных кодов. И что особенно важно, как и почему удалось разработать машинные способы «взлома» и успешно их использовать.
Взлом кодов Энигмы и кодов других шифровальных машин обеспечил союзникам не только доступ к военно-тактической информации, но и к информации МИДа, полицейской, СС-овской и железнодорожной. Сюда же относятся сообщения стран «оси», особенно японской дипломатии, и итальянской армии. Союзники получали также информацию о внутреннем положении в Германии и у ее союзников.

Над расшифровкой кодов только в Англии трудился многотысячный коллектив секретной службы. Эту работу опекал лично премьер-министр Англии Уинстон Черчиль, который знал о важности этой работы по опыту Первой Мировой войны, когда он был Военно-морским министром правительства Великобритании. Уже в ноябре 1914 года он приказал расшифровывать все перехваченные вражеские телеграммы. Он также приказал расшифровать ранее перехваченные телеграммы, чтобы понять образ мыслей немецкого командования. Это - свидетельство его дальновидности. Самый знаменитый итог этой его деятельности - форсирование вступления США в Первую мировую войну.
Столь же дальновидным было создание английских станций прослушивания - тогда это была совершенно новая идея - особенно прослушивание радиообмена вражеских кораблей.

Уже тогда и в период между двумя мировыми войнами Черчиль приравнивал такую деятельность к новому виду оружия. Наконец, ясно было, что необходимо засекретить собственные радиопереговоры. И все это нужно было держать в тайне от врага. Есть большие сомнения, что вожди Третьего Рейха все это осознавали. В руководстве Вермахта (ОКВ) существовало отделение с небольшим число криптологов и с задачей «разработать методы раскрытия радиосообщений противника», причем речь шла о фронтовых радиоразведчиках, которым вменялось в обязанность обеспечивать фронтовых командиров тактической информацией на их участке фронта. В немецкой армии используемые шифровальные машины оценивали не криптологи (по качеству шифрования и возможностям взлома), а технические специалисты.

Союзники следили за постепенным совершенствованием немецкой шифровальной техники и тоже совершенствовали методы взлома шифровальных кодов. Факты, свидетельствовавшие об информированности союзников, немцы относили за счет предательства и шпионажа. Кроме того, в Третьем Рейха часто отсутствовала четкая подчиненность, а службы шифрования разных родов войск не только не взаимодействовали между собой, но и свои навыки скрывали от шифровальщиков других родов войск, так как «конкуренция» была в порядке вещей. Разгадать шифровальные коды союзников немцы и не пытались, так как у них для этого было мало криптологов, и те что были, работали изолированно друг от друга. Опыт же английских криптологов показал, что совместная работа большого коллектива криптологов позволила решить практически все поставленные задачи. К концу война начался постепенный переход в области шифрования от машинной работы к работе на базе компьютеров.

Шифровальные машины в военном деле были впервые применены в Германии в 1926 году. Это побудило потенциальных противников Германии включиться в развитие собственных методов шифрования и дешифровки. Например, Польша занялась этим вопросом, причем сначала ей пришлось разрабатывать теоретические основы машинной криптологии, поскольку «ручные» методы для этого не годились. Будущая война потребовала бы ежедневно расшифровывать тысячи радиосообщений. Именно польские специалисты в 1930 году первыми начали работы по машинному криптологическому анализу. После начала войны и оккупации Польши и Франции эти работы продолжили английские специалисты. Особенно важными здесь были теоретические работы математика А.Тюринга. Начиная с 1942 года раскрытие шифровальных кодов приобрело чрезвычайно важное значение, так как немецкое командование для передачи своих распоряжений все чаще использовало радиосвязь. Нужно было разработать совершенно новые способы криптологического анализа для дешифровальных машин.

Историческая справка.
Первым применил шифрование текста Юлий Цезарь. В 9-м веке арабский ученый Аль-Кинди впервые рассмотрел задачу дешифровки текста. Разработке методов шифрования были посвящены работы итальянских математиков 15-16 веков. Первое механическое устройство придумал в 1786 году шведский дипломат, такой прибор был и в распоряжении американского президента Джефферсона в 1795 году. Только в 1922 году этот прибор был улучшен криптологом американской армии Мауборном. Он использовался для шифровки тактических сообщений вплоть до начала Второй Мировой войны. Патенты на улучшение удобства пользования (но не на надежность шифровки) выдавались американским Бюро патентов, начиная с 1915 года. Все это предполагалось использовать для шифровки бизнес-переписки. Несмотря на многочисленные усовершенствования приборов, ясно было, что надежной является шифровка только коротких текстов.

В конце первой мировой войны и в первые годы после нее возникает несколько изобретений, созданных любителями, для которых это было своеобразным хобби. Назовем имена двух из них: Хеберн (Hebern) и Вернам (Vernam), оба американцы, ни один из них о науке криптологии, скорее всего, вообще не слышал. Последний из двух даже реализовал некоторые операции Булевой логики, о которой тогда вообще мало кто знал, кроме профессиональных математиков. Дальнейшим усовершенствованием этих шифровальных машин занялись профессиональные криптологи, это позволило усилить их защищенность от взлома.

С 1919г. начинают патентовать свои разработки и немецкие конструкторы, одним из первых был будущий изобретатель Энигмы Артур Шербиус (1878 - 1929). Были разработаны четыре варианта близких по конструкции машин, но коммерческого интереса к ним проявлено не было, вероятно потому, что машины были дорогими и сложными в обслуживании. Ни ВМФ, ни МИД не приняли предложений изобретателя, поэтому он попробовал предложить свою шифровальную машину в гражданские секторы экономики. В армии и МИДе продолжали пользоваться шифрованием по книгам.

Артур Шербиус перешел работать в фирму, купившую его патент на шифровальную машину. Эта фирма продолжала совершенствовать Энигму и после смерти ее автора. Во втором варианте (Enigma B) машина представляла собой модифицированную электрическую пишущую машинку, с одной стороны ее было устроено шифровальное устройство в виде 4 сменных роторов. Фирма широко выставляла машину и рекламировала ее как не поддающуюся взлому. Ею заинтересовались офицеры Рейхсвера. Дело в том, что в 1923 году вышли воспоминания Черчилля, в которых он рассказал о своих криптологических успехах. Это вызвало шок у руководства немецкой армии. Немецкие офицеры узнали, что большая часть их военных и дипломатических сообщений была расшифрована британскими и французскими экспертами! И что этот успех во много определялся слабостью дилетантской шифровки, изобретенной любителями-шифровальщиками, так как военной немецкой криптологии просто не существовало. Естественно, они начали искать надежные способы шифрования для военных сообщений. Поэтому у них возник интерес к Энигме.

Энигма имела несколько модификаций: А,В,С и т.д. Модификация С могла выполнять как шифровку, так и дешифровку сообщений; она не требовала сложного обслуживания. Но и ее продукция еще не отличалась стойкостью к взлому, потому что создателей не консультировали профессиональные криптологи. Она использовалась в немецком военно-морском флоте с 1926 по 1934 гг. Следующая модификация Энигма D имела и коммерческий успех. Впоследствии, с1940 г. ее использовали на железнодорожном транспорте в оккупированных районах Восточной Европы.
В 1934г. в немецком морском флоте начали использовать очередную модификацию Энигма I.

Любопытно, что расшифровкой немецких радиосообщений, засекреченных этой машиной, пытались заниматься польские криптологи, причем результаты этой работы становились каким-то образом известны немецкой разведке. Поначалу поляки добились успеха, но «наблюдавшая» за ними немецкая разведка сообщила об этом своим криптологам, и те поменяли шифры. Когда выяснилось, что польские криптологи не смогли взломать зашифрованные Энигмой -1 сообщения, эту машину начали применять и сухопутные войска - Вермахт. После некоторого совершенствования именно эта шифровальная машина стала основной во Второй Мировой войне. С 1942 года подводный флот Германии принял «на вооружение» модификацию Энигма - 4.

Постепенно к июлю 1944 г. контроль над шифровальным делом переходит из рук Вермахта под крышу СС, главную роль здесь играла конкуренция между этими родами вооруженных сил. С первых же дней ВМВ армии США, Швеции, Финляндии, Норвегии, Италии и др. стран насыщаются шифровальными машинами. В Германии конструкции машин постоянно совершенствуются. Основная трудность при этом была вызвана невозможностью выяснить, удается ли противнику расшифровывать тексты, зашифрованные данной машиной. Энигма разных модификаций была внедрена на уровнях выше дивизии, она продолжала выпускаться и после войны (модель «Schlüsselkasten 43») в г. Хемнице: в октябре 1945г. было выпущено 1 000 штук, в январе 1946г. - уже 10 000 штук!

Телеграф, историческая справка.
Появление электрического тока вызвало бурное развитие телеграфии, которое не случайно происходило в 19-м веке параллельно с индустриализацией. Движущей силой являлись железные дороги, которые использовали телеграф для нужд железнодорожного движения, для чего были развиты всевозможные приборы типа указателей. В 1836 году появился прибор Steinhel`я, а в 1840 его развил Сэмюель Морзе (Samuel MORSE). Дальнейшие улучшения свелись к печатающему телеграфу Сименса и Гальске (Siemens & Halske, 1850), который превращал принятые электрические импульсы в читаемый шрифт. А изобретенное в 1855г. Худжесом (Hughes) печатающее колесо после ряда усовершенствований служило еще и в 20-м веке.

Следующее важное изобретение для ускорения переноса информации - было создано в 1867 году Витстоуном (Wheatstone): перфолента с кодом Морзе, которую прибор ощупывал механически. Дальнейшему развитию телеграфии препятствовало недостаточное использование пропускной способности проводов. Первую попытку сделал Мейер (B.Meyer) в 1871 году, но она не удалась, потому что этому препятствовали различная длина и количество импульсов в буквах Морзе. Но в 1874 году французскому инженеру Эмилю Бодо (Emile Baudot) удалось решить эту проблему. Это решение стало стандартом на следующие 100 лет. Метод Бодо имел две важные особенности. Во-первых, он стал первым шагом на пути к использованию двоичного исчисления. И во-вторых, это была первая надежная система многоканальной передачи данных.

Дальнейшее развитие телеграфии упиралось в необходимость доставки телеграмм с помощью почтальонов. Требовалась другая организационная система, которая бы включала: прибор в каждом доме, обслуживание его специальным персоналом, получение телеграмм без помощи персонала, постоянное включение в линию, выдача текстов постранично. Такое устройство имело бы виды на успех только в США. В Европе до 1929 года почтовая монополия препятствовала появлению любого частного устройства для передачи сообщений, они должны были стоять только на почте.

Первый шаг в этом направлении сделал в 1901 году австралиец Дональд Муррей (Donald Murray). Он, в частности, модифицировал код Бодо. Эта модификация была до 1931 года стандартом. Коммерческого успеха он не имел, так как патентовать свое изобретение в США не решился. В США конкурировали между собой два американских изобретателя: Говард Крум (Howard Krum) и Клейншмидт (E.E.Kleinschmidt). Впоследствии они объединились в одну фирму в Чикаго, которая начала в 1024 году выпускать аппаратуру, пользовавшуюся коммерческим успехом. Несколько их машин импортировала немецкая фирма Лоренц, установила их в почтамтах и добилась лицензии на их производство в Германии. С1929 года почтовая монополия в Германии была отменена, и частные лица получили доступ к телеграфным каналам. Введение в 1931 г. международных стандартов на телеграфные каналы позволило организовать телеграфную связь со всем миром. Такие же аппараты стала производить с 1927 года фирма Сименс и Гальске.

Объединить телеграф с шифровальной машиной впервые удалось 27-летнему американцу Гильберту Вернаму (Gilbert Vernam), работнику фирмы АТТ. В 1918г. он подал заявку на патент, в котором эмпирически использовал булеву алгебру (о которой он, между прочим, не имел понятия и которой тогда занимались несколько математиков во всем мире).
Большой вклад в криптологию внес американский офицер Вильям Фридман, он сделал американские шифровальные машины практически неподдающимися взлому.

Когда в Германии появились телеграфные аппараты Сименса и Гальске, ими заинтересовался военно-морской флот Германии. Но его руководство все еще находилось под впечатлением о том, что англичане во время первой мировой войны разгадали германские коды и читали их сообщения. Поэтому они потребовали соединить телеграфный аппарат с шифровальной машиной. Это было тогда совершенно новой идеей, потому что шифрование в Германии производилось вручную и только потом зашифрованные тексты передавались.

В США этому требованию удовлетворяли аппараты Вернама. В Германии за эту работу взялась фирма Сименс и Гальске. Первый открытый патент по этой теме они подали в июле 1930г. К 1932г. был создан работоспособный аппарат, который вначале свободно продавался, но с 1934г. был засекречен. С 1936г. этими приборами стали пользоваться и в авиации, а с 1941г. - и сухопутные войска. С 1942г. началась машинная шифровка радиосообщений.

Немцы продолжали совершенствовать различные модели шифровальных машин, но на первое место они ставили усовершенствование механической части, относясь к криптологии по-дилетантски, фирмы-производители не привлекали для консультаций профессиональных криптологов. Большое значение для всей этой проблематики имели работы американского математика Клода Шеннона который начитная с 1942г. работал в лабораториях Белла и проводил там секретные математические исследования. Еще до войны он был известен доказательством аналогии между булевой алгеброй и релейными соединениями в телефонии. Именно он открыл «бит» как единицу информации. После войны, в 1948г. Шеннон написал свой основной труд «Математическая теория коммуникаций». После этого он стал профессором математики в университете.

Шеннон первый начал рассматривать математическую модель криптологии и развивал анализ зашифрованных текстов информационно-теоретическими методами. Фундаментальный вопрос его теории звучит так: «Сколько информации содержит зашифрованный текст по сравнению с открытым?» В 1949году он опубликовал труд «Теория коммуникаций секретных систем», в которой отвечал на этот вопрос. Проведенный там анализ был первым и единственным для количественной оценки надежности метода шифрования. Проведенный после войны анализ показал, что ни немецкие, ни японские шифровальные машины не относятся к тем, которые невозможно взломать. Кроме того, существуют другие источники информации (например, разведка), которые значительно упрощают задачу дешифровки.

Положение Англии заставляло ее обмениваться с США длинными зашифрованными текстами, именно большая длина делала возможной их дешифровку. В особом отделе британской тайной службы М 16 был разработан метод, повышавший степень засекреченности сообщения - ROCKEX. Американский метод шифрования для министерства иностранных дел был немецкими специалистами взломан и соответствующие сообщения были дешифрованы. Узнав об этом, США в 1944г. заменили несовершенную систему на более надежную. Примерно в то же время немецкий вермахт, флот и МИД тоже поменяли шифровальную технику на вновь разработанную. Недостаточной надежностью отличались и советские методы шифрования, из-за чего они были американскими службами взломаны и многие советские разведчики, занимавшиеся шпионажем американской атомной бомбы, были выявлены (операция Venona - breaking).

Взлом.
Теперь расскажем о ВЗЛОМЕ англичанами немецких шифровальных машин, то есть машинном разгадывании способа шифрования текстов в них. . Эта работа получила английское название ULTRA. Немашинные методы дешифровки были слишком трудоемкими и в условиях войны неприемлемыми. Как же были устроены английские машины для дешифровки, без которых союзники не могли бы добиться преимущества перед немецкими шифровальщиками? В какой информации и текстовом материале они нуждались? И не было ли здесь ошибки немцев, и если была, то почему она произошла?

Сначала научно-технические основы.
Сначала была проведена предварительная научная работа, так как нужно было, прежде всего, криптологически и математически проанализировать алгоритмы. Это было возможно, потому что шифровки широко использовались немецким вермахтом. Для такого анализа были необходимы не только зашифрованные тексты, полученные путем прослушивания, но и открытые тексты, полученные путем шпионажа или кражи. Кроме того, нужны были разные тексты, зашифрованные одним и тем же способом. Одновременно проводился лингвистический анализ языка военных и дипломатов. Имея длинные тексты, стало возможным математически установить алгоритм даже для незнакомой шифровальной машины. Потом удавалось реконструировать и машину.

Для этой работы англичане объединили примерно 10 000 человек, в том числе математиков, инженеров, лингвистов, переводчиков, военных экспертов, а также других сотрудников для сортировки данных, их проверки и архивирования, для обслуживания машин. Это объединение носило название ВР(Bletchley Park - Блетчли парк), оно было под контролем лично Черчилля. Полученная информация оказалась в руках союзников могучим оружием.

Как же проходило овладение англичанами вермахтовской Энигмой? Первой занялась расшифровкой немецких кодов Польша. После Первой мировой войны она находилась в постоянной военной опасности со стороны обеих своих соседей - Германии и СССР, которые мечтали вернуть себе утраченные и перешедшие к Польше земли. Чтобы не оказаться перед неожиданностями, поляки записывали радиосообщения и занимались их расшифровкой. Они были сильно встревожены тем, что после введения в феврале 1926г. в немецком ВМФ Энигмы С, а также после ее введения в сухопутных войсках в июле 1928г. им не удавалось расшифровывать зашифрованные этой машиной сообщения.

Тогда отдел BS4 польского Генштаба предположил, что у немцев появилась машинная шифровка, тем более, что ранние коммерческие варианты Энигмы были им известны. Польская разведка подтвердила, что в Вермахте с 1 июня 1930г. используется Энигма 1. Военным экспертам Польши не удалось расшифровать немецкие сообщения. Даже получив через свою агентуру документы на Энигму, они не смогли добиться успеха. Они пришли к заключению, что недостает научных знаний. Тогда они поручили трем математикам, один из которых учился в Геттингене, создать систему анализа. Все трое прошли дополнительную подготовку в университете г. Познань и свободно говорили по-немецки. Им удалось воспроизвести устройство Энигмы и создать в Варшаве ее копию. Отметим выдающиеся заслуги в этом одного из них, польского математика М.Реевского (1905 - 1980). Хотя Вермахт все время совершенствовал шифровку своих сообщений, польским специалистам удавалось вплоть до 1 января 1939г. их расшифровывать. После этого поляки начали сотрудничать с союзниками, которым они до того ничего не сообщали. Такое сотрудничество ввиду очевидной военной опасности и без того было целесообразным. 25 июля 1939г. они передали английским и французским представителям всю им известную информацию. 16 августа того же года польский «подарок» достиг Англии, и английские эксперты из только что созданного центра расшифровки ВР начали с ним работать.

Британские криптологи после Первой мировой войны были сокращены, они оставались только под крышей Министерства иностранных дел. Во время войны в Испании немцы использовали Энигму D, и остававшиеся на службе английские криптологи под руководством выдающегося специалиста-филолога Альфреда Диллвина (Alfred Dillwyn, 1885-1943) продолжали работу по расшифровке немецких сообщений. Но чисто математических методов было недостаточно. К этому времени в конце 1938г. среди посетителей английских курсов для подготовки шифровальщиков оказался математик из Кембриджа Алан Тюринг (Alan Turing). Он принял участие в атаках на Энигму 1. Им была создана модель анализа, известная как «машина Тюринга», которая позволила утверждать, что алгоритм расшифровки обязательно существует, оставалось только его открыть!

Тюринга включили в состав ВР как военнообязанного. К 1 мая 1940г. он добился серьезных успехов: он воспользовался тем, что ежедневно в 6 часов утра немецкая метеослужба передавала зашифрованный прогноз погоды. Ясно, что в нем обязательно содержалось слово «погода» (Wetter), и что строгие правила немецкой грамматики предопределяли его точное положение в предложении. Это позволило ему, в конечном счете, прийти к решению проблемы взлома Энигмы, причем он создал для этого электромеханическое устройство. Идея возникла у него в начале 1940г., а в мае того же года с помощью группы инженеров такое устройство было создано. Задача расшифровки облегчалась тем, что язык немецких радиосообщений был простым, выражения и отдельные слова часто повторялись. Немецкие офицеры не владели основами криптологии, считая ее несущественной.

Английские военные и особенно лично Черчиль требовали постоянного внимания к расшифровке сообщений. Начиная с лета 1940г. англичане расшифровывали все сообщения, зашифрованные с помощью Энигмы. Тем не менее, английские специалисты непрерывно занимались совершенствованием дешифровальной техники. К концу войны английские дешифраторы имели на своем вооружении 211 круглосуточно работающих дешифрирующих устройств. Их обслуживали 265 механиков, а для дежурства были привлечены 1675 женщин. Работу создателей этих машин оценили много лет спустя, когда попытались воссоздать одну из них: из-за отсутствия на тот момент необходимых кадров, работа по воссозданию известной машины продолжалась несколько лет и осталась неоконченной!

Созданная тогда Дюрингом инструкция по созданию дешифрирующих устройств находилась под запретом до 1996 года… Среди средств дешифровки был метод «принудительной» информации: например, английские самолеты разрушали пристань в порту Калле, заведомо зная, что последует сообщение немецких служб об этом с набором заранее известных англичанам слов! Кроме того, немецкие службы передавали это сообщение много раз, каждый раз кодируя его разными шифрами, но слово в слово…

Наконец, важнейшим фронтом для Англии была подводная война, где немцы использовали новую модификацию Энигма М3. Английский флот смог изъять такую машину с захваченной им немецкой подводной лодки. С 1 февраля 1942 года ВМФ Германии перешел на пользование моделью М4. Но некоторые немецкие сообщения, зашифрованные по-старому, по ошибке содержали информацию об особенностях конструкции этой новой машины. Это сильно облегчило задачу команде Тюринга. Уже в декабре 1942г. была взломана Энигма М4. 13 декабря 1942 году английское Адмиралтейство получило точные данные о местоположении 12 немецких подводных лодок в Атлантике…

По мнению Тюринга, для ускорения дешифровки необходимо было переходить к использованию электроники, так как электромеханические релейные устройства эту процедуру выполняли недостаточно быстро. 7 ноября 1942 года Тюринг отправился в США, где вместе с командой из лабораторий Белла создал аппарат для сверхсекретных переговоров между Черчиллем и Рузвельтом. Одновременно под его руководством были усовершенствованы американские дешифровальные машины, так что Энигма М4 была взломана окончательно и до конца войны давала англичанам и американцам исчерпывающую разведывательную информацию. Только в ноябре 1944 года у немецкого командования возникли сомнения в надежности своей шифровальной техники, однако ни к каким мерам это не привело…

(Примечание переводчика: так как начиная с 1943 года во главе английской контрразведки стоял советский разведчик Ким Филби, то вся информация сразу же поступала в СССР! Часть такой информации передавалась Советскому Союзу и официально через английское бюро в Москве, а также полуофициально через советского резидента в Швейцарии Александра Радо.)

Chiffriermaschinen und Entzifferungsgeräte
im Zweiten Weltkrieg:
Technikgeschichte und informatikhistorische Aspekte
Von der Philosophischen Fakultät der Technischen Universität Chemnitz genehmigte
Dissertation
zur Erlangung des akademischen Grades doctor philosophiae (Dr.phil.)
von Dipl.-Ing.Michael Pröse

Тема внеклассного занятия: История одного кода.

Тип занятия: открытие новых знаний

Используемые на уроке средства ИКТ:

Персональный компьютер (ПК) учителя, мультимедийный проектор, экран;

ПК учащихся, раздаточный материал.

Характеристика учебных возможностей группы:

Учащиеся владеют ууд:

предметными:

    способами кодирования информации, умеют работать с шифром Цезаря (из курса начальной школы).

метапредметными:

познавательными: -

    умеют структурировать полученные знания

регулятивными :

    планируют деятельность на уроке;

    способны к самооценке результатов работы.

коммуникативными:

    умеют с достаточной полнотой и точностью выражать свои мысли.

личностными:

    умеют строить коммуникативные отношения в группе единомышленников, способны к рефлексии.

    владеют навыками учебно-исследовательской деятельности.

Цель:

провести исследование истории создания шифра Цезаря и результаты представить в форме ментальной карты.

Задачи:

    научить работе с ментальной картой

    научить поиску информации;

    научить извлекать необходимую информацию;

    формировать коммуникативные компетентности;

В ходе занятия учитель создает такие условия, при которых дети получат возможность:

    почувствовать себя частью команды, объединенной работой в сетевом проекте “В мире кодов”;

    научиться безопасной работе в Интернете;

    научиться работать в сервисе ;

    научиться структурировать полученную информацию.

Планируемые образовательные результаты :

предметные:

    развитие умений работать с учебным текстом, выделять главное:

1) представлено название шифра;

3) указано сражение, год, кто вел войну и с кем;

4) есть иллюстрация данного шифра;

5) представлен ключ к разгадке шифра.

    формирование навыков и умений безопасной работы с компьютерными программами и в Интернете;

1) равильно указаны настройки доступа к карте (доступно всем в Интерненте без права редактирования)

    формирование умения соблюдать нормы информационной этики и права

метапредметные:

познавательные -

    формулирование познавательной цели;

    осуществление поиска необходимой информации в открытом информационном пространстве;

    фиксировать информацию с помощью средств ИКТ.

регулятивные -

    планирование деятельности на уроке;

    взаимооценивание результатов работы.

коммуникативные -

    умение организовывать учебное сотрудничество (распределение обязанностей участников);

    умение аргументировать и отстаивать свое мнение.

личностные:

    пунктуальность в работе (задания выполнялись строго в срок);

    проявление самостоятельности в поиске информации;

    проявление самостоятельности в создании ментальной карты.

Основные понятия, изучаемые на уроке:

Код, шифр, алфавит, ключ.

Краткая аннотация внеурочного занятия “История одного кода”

Главный герой проекта “В мире кодов”, в рамках которого проходит занятие, кот Кодфилд приглашает ученых криптографов помочь ему в изучении истории возникновения шифров. На время занятия ученики становятся учеными кртптографами, помогающими коту Кодфилду изучить историю возникновения шифра Цезаря. В рамках занятия ученики исследуют материалы по теме истории кодирования информации, учатся пользоваться безопасным интернетом и структурировать полученную информацию используя сервис создания ментальных карт . Работа на занятии требует от учеников составления алгоритма действий, принятия решений в ходе работы с картой, умения оценить действие товарища по заданным критериям.

В ходе занятия учащиеся могут обращаться к презентации для работы со ссылками самостоятельно. Презентация создана в Google, что позволяет учителю разрешить с ней работать определенному кругу учеников, предоставляя им доступ редакторов.

В течении занятия слайды демонстрируются в следующей последовательности

Слайд 1. Тема урока.

Слайд 2. Просмотр мультфильма “ Машины сказки - Али-Баба”. После просмотра выясняется значение слова код .

Слайд 3. Ученики с помощью учителя выясняют кто такой криптограф, чем он занимается, какими качествами обладает. Учитель предлагает ученикам рассказать, какими качествами они уже обладают и чему еще им нужно научиться.

Слайд 4. Целеполагание. Постановка проблемы. .

Слайд 5. Ученики составляют план действий. На слайде план действий учеников расположен не по порядку. Ученики самостоятельно формируют алгоритм деятельности и озвучивают его. По щелчку на экране появляется правильный план работы.Ученики формулируют цель урока.

Слайд 6. После обсуждения правил дорожного движения, выясняется, кто их придумал. На слайде изображение Цезаря и краткая информация о нем. Идет обсуждение, чем прославился Юлий Цезарь, учитель выясняет,что знают ученики о шифровании, его назначении.

Слайд 7 . Знакомство с сервисом . Учитель объясняет правила работы с сервисом. Через ссылку в заголовке слайда происходит переход на обучающую страничку на сайте nachalka.com.

Слайд8 . Учитель демонстрирует шаблон ментальной карты, по которому ученики создают свою карту, дают доступ другим участникам.

Слайд 9. Пользуясь ссылкой в презентации ученики переходят в детскую поисковую систему, для проведения исследования и нахождения ответов на предложенные вопросы.

Слайд 10. Динамическая пауза “Гимнастика для глаз”

Слайд 11 . Работа с картой. Ученики создают карту по шаблону, заполняют поля карты собранной информацией. Размещают ссылки на созданные карты.

Слайд 12. Используя ссылки на форму “Лист взаимооценки "Работа с ментальной картой”, ученики переходят на форму Google, при помощи которой оценивают работу товарищей. Возвращаются на слайд №10, переходят по ссылкам на карты и оценивают работу друг друга.

Слайд 13. Проводится рефлексия деятельности учащихся. На слайде размещены вопросы, которые помогут ученикам разобраться, в чем они испытали трудность при выполнении заданий и с чем они справились легко. Выясняется, какие качества они приобрели за время работы и приблизились ли они к образу ученого криптографа.

Слайд 14. Представлены ссылки на таблицы с оценками учеников и учителя. Перейдя по ссылкам ученики увидят итоговые оценки за свою работу. Итоговая оценка складывается из оценки учеников и учителя. Работа, набравшая большее количество баллов, размещается на сайте проекта “В мире кодов”

Слайд 15. Слова благодарности.

Слайд16. Список полезных сайтов, используется при затруднении нахождения информации.

Слайд 17. «Ссылки на электронные ресурсы». Не демонстрируется.

Ход занятия:

Мотивационно -целевой этап

Организационный момент

Учитель:

Здравствуйте, ребята! Сегодня наше занятие мы начнем с просмотра мультфильма про Машеньку, где она сочиняет сказку про Али - Бабу.

Демонстрируется видеоролик

Ребята, что знал Али-Баба, что ему позволило зайти в пещеру и, чего не знал жадный брат, чтобы выбраться из пещеры?

Ученики:

Забыл волшебное слово.

Учитель:

Как можно по другому назвать волшебное слово? Этот термин вам знаком он присутствует в названии нашего занятия.

Ученики:

Он забыл код

Учитель:

Скажите, что такое код?

Ученики:

Зашифрованное слово.

Учитель:

Кодом называется отдельная комбинация символов (знаков). Ребята, уже второе занятие мы мы участвуем в проекте “В мире кодов”, на первом мы с Вами познакомились с котом Кодфилдом, который пригласил нас в увлекательный мир кодов. Сегодня он зовет нас в мир истории и собирает группу ученых-криптографов, изучающих историю возникновения шифра Цезаря. В творческую группу ему нужны молодые (это про нас), творческие(это тоже про нас), но при этом ИКТ- компетентные и глубоко знающие кодирование информации девочки и мальчики. Ребята, а каким вы его себе представляете молодого ученого криптографа? Что он изучает, какую науку? Какими качествами он должен обладать?

Ученики:

Криптограф - ученый изучающий методы шифрования информации. Он должен быть умным, интересующимся предметом, исследователем, наблюдательным, общительным, коммуникабельным, любящим свое дело, настойчивым, не бояться трудностей.

Учитель:

Наверняка этот ученый много знает о кодировании информации и умеет пользоваться любыми сервисами в сети интернет.

А какими из названных качеств вы уже обладаете?

Ученики:

Мы любознательные, умеем пользоваться компьютером, любим узнавать новое и изучать новые сервисы, любим работать в Интернете.

Учитель:

Тогда это путешествие для нас.

Целеполагание. Ребята, давайте попробуем определить цель нашего занятия.

Кодфилд поставил перед нами нелегкую задачу. Он попросил ребят из разных школ объединиться в поисках информации об истории создания шифров и кодов. А полученные данные обработать и разместить в карте ума, которую мы сделаем с Вами с помощью сервиса SpiderScribe.net.

Лучшие работы Кодфилд разместит на сайте проекта “В мире кодов”.

А что вы знаете о шифре Цезаря?

Ученики: (если ученики не знают ответ, дополняет учитель)

Его создал древнеримский полководец Гай Юлий Цезарь.

Каждый символ в тексте заменяется символом, находящимся на некотором постоянном числе позиций левее или правее него в алфавите.

Учитель:

Хорошо, молодцы, эти знания вы получили в начальной школе.

Проблема: Можно ли, зная материал наполовину, серьезно заняться проблемой? Что для этого нужно знать? Попробуйте спланировать действия в правильном порядке: они представлены на слайде. Расположите их в правильном порядке.

Ученики:

    найти информацию по заданной теме,

    выделить главное,

    ответить на заданные вопросы,

    научиться работать с ментальной картой,

    разместить полученную информацию в ментальной карте.

Цель нашего занятия исследовать историю создания шифра Цезаря, представить информацию в ментальной карте.

Актуализация знаний

Учитель:

Вы знаете, что в обычной жизни нас окружает информация, закодированная в знаки, символы, звуки и большинство этих кодов мы можем расшифровать и понять их значение. Например, дорожные знаки. О чем они говорят?

Ученики:

Они говорят о правилах дорожного движения. Как нужно вести себя на дороге, чтобы не попасть в ДТП.

Учитель:

А знаете ли Вы, кто первым придумал ввести правила дорожного движения?

Ученики:

Нет

Да, Цезарь.

Учитель:

Гай Юлий Цезарь - первый римский полководец, который ввел правила дорожного движения. Но прославился он как выдающийся полководец, который выиграл не одно сражение. А для переписки со своими генералам он придумал шифр, который стал носить его имя - шифр Цезаря.

Ознакомление с новым материалом

Учитель:

Шифр помогал скрыть информацию от посторонних глаз. А кто мог прочитать послания?

Ученики:

Тот, у кого был ключ к шифру.

Учитель:

Правильно, шифр не имеет никакого смысла, если к нему нет ключа. Информация в процессе шифрования проходит два этапа: первый - процесс кодирования, когда мы применяем кодировочную азбуку к тексту, второй - декодирования, когда мы к зашифрованной информации применяем ключ шифра, чтобы узнать истинный смысл послания.

Сегодня мы узнаем историю создания шифра Цезаря, и расскажу ее не я, расскажите и покажите историю шифра вы, используя сервис

сервис для создания ментальных карт. Это новая для вас программа, в которой вы научитесь работать и представлять информацию.

Ментальная карта - это карта ума, которая представляет информацию визуально. Она поможет вам представить информацию в виде схемы.

Прежде, чем мы начнем поиск интересующей нас информации, познакомимся с программой и создадим ментальную карту.

Слово учителя

Используя обучающую инструкцию на сайте nachalka.com. учитель объясняет правила работы с сервисом.

Настройка доступа к карте

Демонстрирует как образец для создания карты учениками.

После того как учитель познакомил учеников с правилами работы в сервисе и дал шаблон заполнения карты, ученики приступают к выполнению задания.

Действия учеников по алгоритму

    запустите Google Chrome

    введите в поисковой строке название сервиса

    зарегистрируйтесь в сервисе на получение трех бесплатных карт

Динамическая пауза. Гимнастика для глаз.

Практический этап:

Задание для учеников: создание ментальной карты “История одного кода”

Поиск ответов на вопросы

1) Найдите ответы на вопросы. Для получения информации воспользуйтесь детской поисковой системой на сайте nachalka.com.

    Название шифра (кода).

    Кто создал и в каком году?

    Алфавит (изображение алфавита шифра)

    Ключ к разгадке шифра (изображение).

    В каком сражении использовался шифр?

Работа в группах

Распределение обязанностей учащимися

После того, как дети нашли нужную информацию, они делятся на группы для совместной работы с ментальной картой. (группа 3 человека)

Распределение ролей

Ученикам предлагается составить план действий группы и распределить обязанности между собой.

При разделении группы распределяются обязанности:

1) 1 ученик дает доступ другим участникам к карте;

2) участники распределяют между собой поля для заполнения

Работа с картой

1) Оформите ментальную карту согласно образцу.

2) Заполните поля карты информацией.

3) Сделайте вывод, ответив на вопрос: Как помогает шифровка выиграть войну? (Напишите своими словами 1,2 предложения).

Рефлексивно - оценочный этап

Учитель:

Ребята, Вы создали ментальную карту “История одного кода”. Вам понравилось? Что было самым сложным в задании? Что Вам больше всего понравилось в работе? Как вы думаете, вам удалось приблизиться к образу ученого - криптографа? Какими качествами вы сейчас стали обладать, чему научились?

Ученики:

Мы попробовали быть исследователями, были наблюдательными когда находили нужную информацию, обсуждали свои обязанности, были настойчивыми в создании ментальной карты.

Учитель:

Молодцы, вы справились с задачами урока,В одиночку это было делать сложнее. Я предлагаю Вам оценить работу товарищей используя форму Google.Пройдя по ссылкам на слайде №12 “Взаимооценка”.

Я оценила Вашу работу и тоже поставила баллы за задание. Учитель оценивает работу учеников пользуясь формой

Приложение 1.

Работа с ментальной картой.

Настройки доступа.

Приложение 2.

Шаблон ментальной карты “История одного кода”