Слои мантии земли. Мантия земли

Д.Ю. Пущаровский, Ю.М. Пущаровский (МГУ им. М.В. Ломоносова)

Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии. Число прямых данных о веществе глубинных зон весьма ограниченно. В этом плане особое место занимает минеральный агрегат из кимберлитовой трубки Лесото (Южная Африка), который рассматривается как представитель мантийных пород, залегающих на глубине ~250 км. Керн, поднятый из самой глубокой в мире скважины, пробуренной на Кольском полуострове и достигшей отметки 12 262 м, существенно расширил научные представления о глубинных горизонтах земной коры - тонкой приповерхностной пленке земного шара. Вместе с тем новейшие данные геофизики и экспериментов, связанных с исследованием структурных превращений минералов, уже сейчас позволяют смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли, знание которых способствует решению таких ключевых проблем современного естествознания, как формирование и эволюция планеты, динамика земной коры и мантии, источники минеральных ресурсов, оценка риска захоронения опасных отходов на больших глубинах, энергетические ресурсы Земли и др.

Сейсмическая модель строения Земли

Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра .

Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо , М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю (рис. 1). Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D" (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Рис. 1. Схема глубинного строения Земли

Тем больше проводится сейсмологических исследований, тем больше появляется сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км . Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии, от которых они и зависят. Глобальные границы представляют иную категорию явлений. Они отвечают глобальным изменениям мантийной среды по радиусу Земли.

Отмеченные глобальные сейсмические границы используются при построении геологических и геодинамических моделей, в то время как промежуточные в этом смысле пока внимания почти не привлекали. Между тем различия в масштабах и интенсивности их проявления создают эмпирическую основу для гипотез, касающихся явлений и процессов в глубинах планеты.

Ниже рассмотрим, каким образом геофизические рубежи соотносятся с полученными в последнее время результатами структурных изменений минералов под влиянием высоких давлений и температур, значения которых соответствуют условиям земных глубин.

Проблема состава, структуры и минеральных ассоциаций глубинных земных оболочек или геосфер, конечно, еще далека от окончательного решения, однако новые экспериментальные результаты и идеи существенно расширяют и детализируют соответствующие представления.

Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов (вариации Mg/(Mg + Fe) = 0,8-0,9; (Mg + Fe)/Si = 1,2Р1,9), а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов. В соответствии с химическим и минералогическим составом эти модели получили свои названия: пиролитовая (главные минералы - оливин, пироксены и гранат в отношении 4: 2: 1), пиклогитовая (главные минералы - пироксен и гранат, а доля оливина снижается до 40%) и эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит Al2SiO5 (до 10 вес. %). Однако все эти петрологические модели относятся прежде всего к породам верхней мантии , простирающейся до глубин ~670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/SiO2) ~ 2, оказываясь ближе к оливину (Mg, Fe)2SiO4, чем к пироксену (Mg, Fe)SiO3, а среди минералов преобладают перовскитовые фазы (Mg, Fe)SiO3 с различными структурными искажениями, магнезиовюстит (Mg, Fe)O со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.

Все предложенные модели весьма обобщенные и гипотетичные. Пиролитовая модель верхней мантии с преобладанием оливина предполагает ее значительно большую близость по химическому составу со всей более глубокой мантией. Наоборот, пиклогитовая модель предполагает существование определенного химического контраста между верхней и остальной мантиями. Более частная эклогитовая модель допускает присутствие в верхней мантии отдельных эклогитовых линз и блоков.

Большой интерес представляет попытка согласовать структурно-минералогические и геофизические данные, относящиеся к верхней мантии. Уже около 20 лет допускается, что увеличение скоростей сейсмических волн на глубине ~410 км преимущественно связано со структурной перестройкой оливина a-(Mg, Fe)2SiO4 в вадслеит b-(Mg, Fe)2SiO4, сопровождающейся образованием более плотной фазы с большими значениями коэффициентов упругости. Согласно геофизическим данным, на таких глубинах в недрах Земли скорости сейсмических волн возрастают на 3-5%, тогда как структурная перестройка оливина в вадслеит (в соответствии со значениями их модулей упругости) должна сопровождаться увеличением скоростей сейсмических волн примерно на 13%. Вместе с тем результаты экспериментальных исследований оливина и смеси оливин-пироксен при высоких температурах и давлениях выявили полное совпадение рассчитанного и экспериментального увеличения скоростей сейсмических волн в интервале глубин 200-400 км. Поскольку оливин обладает примерно такой же упругостью, как и высокоплотные моноклинные пироксены, эти данные должны были бы указывать на отсутствие в составе нижележащей зоны граната, обладающего высокой упругостью, присутствие которого в мантии неизбежно вызвало бы более значительное увеличение скоростей сейсмических волн. Однако эти представления о безгранатовой мантии вступали в противоречие с петрологическими моделями ее состава.

Таблица 1. Минеральный состав пиролита (по Л. Лиу, 1979)

Так появилась идея о том, что скачок в скоростях сейсмических волн на глубине 410 км связан в основном со структурной перестройкой пироксен-гранат внутри обогащенных Na частей верхней мантии. Такая модель предполагает почти полное отсутствие конвекции в верхней мантии, что противоречит современным геодинамическим представлениям. Преодоление этих противоречий можно связать с недавно предложенной более полной моделью верхней мантии , допускающей вхождение атомов железа и водорода в структуру вадслеита.

Рис. 2. Изменение объемных про- порций минералов пиролита при возрастании давлений (глуби- ны), по М. Акаоги (1997). Условные обозначения минералов: Ol - оливин, Gar - гранат, Cpx - моноклинные пироксены, Opx - ромбические пироксены, MS - "модифицирован- ная шпинель", или вадслеит (b-(Mg, Fe)2SiO4), Sp - шпинель, Mj - меджорит Mg3(Fe, Al, Si)2(SiO4)3, Mw - магнезиовюстит (Mg, Fe)O, Mg-Pv -Mg-перовскит, Cа-Pv-Cа- перовс- кит, X - предпо- лагаемые Al-содер- жащие фазы со структурами типа ильменита, Cа-феррита и/или голландита

В то время как полиморфный переход оливина в вадслеит не сопровождается изменением химического состава, в присутствии граната возникает реакция, приводящая к образованию вадслеита, обогащенного Fe по сравнению с исходным оливином. Более того, вадслеит может содержать значительно больше по сравнению с оливином атомов водорода. Участие атомов Fe и Н в структуре вадслеита приводит к уменьшению ее жесткости и соответственно уменьшению скоростей распространения сейсмических волн, проходящих сквозь этот минерал.

Кроме того, образование обогащенного Fe вадслеита предполагает вовлечение в соответствующую реакцию большего количества оливина, что должно сопровождаться изменением химического состава пород вблизи раздела 410. Идеи об этих трансформациях подтверждаются современными глобальносейсмическими данными. В целом минералогический состав этой части верхней мантии представляется более или менее ясным. Если говорить о пиролитовой минеральной ассоциации (табл. 1), то ее преобразование вплоть до глубин ~800 км исследовано достаточно детально и в обобщенном виде представлено на рис. 2. При этом глобальной сейсмической границе на глубине 520 км соответствует перестройка вадслеита b-(Mg, Fe)2SiO4 в рингвудит - g-модификацию (Mg, Fe)2SiO4 со структурой шпинели. Трансформация пироксен (Mg, Fe)SiO3 гранат Mg3(Fe, Al, Si)2Si3O12 осуществляется в верхней мантии в более широком интервале глубин. Таким образом, вся относительно гомогенная оболочка в интервале 400-600 км верхней мантии в основном содержит фазы со структурными типами граната и шпинели.

Все предложенные в настоящее время модели состава мантийных пород допускают содержание в них Al2O3 в количестве ~4 вес. %, которое также влияет на специфику структурных превращений. При этом отмечается, что в отдельных областях неоднородной по составу верхней мантии Al может быть сосредоточен в таких минералах, как корунд Al2O3 или кианит Al2SiO5 , который при давлениях и температурах, cответствующих глубинам ~450 км, трансформируется в корунд и стишовит - модификацию SiO2, структура которой содержит каркас из SiO6 октаэдров. Оба этих минерала сохраняются не только в низах верхней мантии, но и глубже.

Важнейший компонент химического состава зоны 400-670 км - вода, содержание которой, по некоторым оценкам, составляет ~0,1 вес. % и присутствие которой в первую очередь связывают с Mg-силикатами . Количество запасенной в этой оболочке воды столь значительно, что на поверхности Земли оно составило бы слой мощностью 800 м.

Состав мантии ниже границы 670 км

Проведенные в последние два-три десятилетия исследования структурных переходов минералов с использованием рентгеновских камер высокого давления позволили смоделировать некоторые особенности состава и структуры геосфер глубже границы 670 км. В этих экспериментах исследуемый кристалл помещается между двумя алмазными пирамидами (наковальнями) , при сжатии которых создаются давления, соизмеримые с давлениями внутри мантии и земного ядра. Тем не менее в отношении этой части мантии, на долю которой приходится более половины всех недр Земли, по-прежнему остается много вопросов. В настоящее время большинство исследователей согласны с идеей о том, что вся эта глубинная (нижняя в традиционном понимании) мантия в основном состоит из перовскитоподобной фазы (Mg,Fe)SiO3, на долю которой приходится около 70% ее объема (40% объема всей Земли), и магнезиовюстита (Mg, Fe)O (~20 %). Оставшиеся 10% составляют стишовит и оксидные фазы, содержащие Ca, Na, K, Al и Fe, кристаллизация которых допускается в структурных типах ильменита-корунда (твердый раствор (Mg, Fe)SiO3-Al2O3), кубического перовскита (CaSiO3) и Са-феррита (NaAlSiO4). Образование этих соединений связано с различными структурными трансформациями минералов верхней мантии . При этом одна из основных минеральных фаз относительно гомогенной оболочки, лежащей в интервале глубин 410-670 км, - шпинелеподобный рингвудит трансформируется в ассоциацию (Mg, Fe)-перовскита и Mg-вюстита на рубеже 670 км, где давление составляет ~24 ГПа. Другой важнейший компонент переходной зоны - представитель семейства граната пироп Mg3Al2Si3O12 испытывает превращение с образованием ромбического перовскита (Mg, Fe)SiO3 и твердого раствора корунда-ильменита (Mg, Fe)SiO3 - Al2O3 при несколько больших давлениях. С этим переходом связывают изменение скоростей сейсмических волн на рубеже 850-900 км, соответствующем одной из промежуточных сейсмических границ. Трансформация Са-граната андрадита при меньших давлениях ~21 ГПа приводит к образованию еще одного упомянутого выше важного компонента нижней мантии - кубического Са-перовскита CaSiO3 . Полярное отношение между основными минералами этой зоны (Mg,Fe)- перовскитом (Mg,Fe)SiO3 и Mg-вюститом (Mg, Fe)O варьирует в достаточно широких пределах и на глубине ~1170 км при давлении ~29 ГПа и температурах 2000-2800 0С меняется от 2: 1 до 3: 1.

Исключительная стабильность MgSiO3 со структурой типа ромбического перовскита в широком диапазоне давлений, соответствующих глубинам низов мантии, позволяет считать его одним из главных компонентов этой геосферы. Основанием для этого заключения послужили эксперименты, в ходе которых образцы Mg-перовскита MgSiO3 были подвергнуты давлению, в 1,3 млн раз превышающему атмосферное, и одновременно на образец, помещенный между алмазными наковальнями, воздействовали лазерным лучом с температурой около 2000 0С.

Таким образом смоделировали условия, существующие на глубинах ~2800 км, то есть вблизи нижней границы нижней мантии. Оказалось, что ни во время, ни после эксперимента минерал не изменил свои структуру и состав. Таким образом, Л. Лиу, а также Е. Ниттл и Е. Жанлоз пришли к выводу, согласно которому стабильность Mg-перовскита позволяет рассматривать его как наиболее распространенный минерал на Земле, составляющий, по-видимому, почти половину ее массы.

Не меньшей устойчивостью отличается и вюстит FexO, состав которого в условиях нижней мантии характеризуется значением стехиометри- ческого коэффициента х < 0,98, что означает одновременное присутствие в его составе Fe2+ и Fe3+. При этом, согласно экспериментальным данным, температура плавления вюстита на границе нижней мантии и слоя D", по данным Р. Болера (1996), оценивается в ~5000 K, что намного выше 3800 0С, предполагаемой для этого уровня (при средних температурах мантии ~2500 0С в основании нижней мантии допускается повышение температуры приблизительно на 1300 0С). Таким образом, вюстит должен сохраниться на этом рубеже в твердом состоянии, а признание фазового контраста между твердой нижней мантией и жидким внешним ядром требует более гибкого подхода и уж во всяком случае не означает четко очерченной границы между ними.

Следует отметить, что в преобладающих на больших глубинах перовскитоподобных фазах может содержаться весьма ограниченное количество Fe, а повышенные концентрации Fe среди минералов глубинной ассоциации характерны лишь для магнезиовюстита. При этом для магнезиовюстита доказана возможность перехода под воздействием высоких давлений части содержащегося в нем двухвалентного железа в трехвалентное, остающееся в структуре минерала, с одновременным выделением соответствующего количества нейтрального железа. На основе этих данных сотрудники геофизической лаборатории Иститута Карнеги Х. Мао, П. Белл и Т. Яги выдвинули новые идеи о дифференциации вещества в глубинах Земли. На первом этапе благодаря гравитационной неустойчивости магнезиовюстит погружается на глубину, где под воздействием давления из него выделяется некоторая часть железа в нейтральной форме. Остаточный магнезиовюстит, характеризую- щийся более низкой плотностью, поднимается в верхние слои, где вновь смешивается с перовскитоподобными фазами. Контакт с ними сопровождается восстановлением стехиометрии (то есть целочисленного отношения элементов в химической формуле) магнезиовюстита и приводит к возможности повторения описанного процесса. Новые данные позволяют несколько расширить набор вероятных для глубокой мантии химических элементов. Например, обоснованная Н. Росс (1997) устойчивость магнезита при давлениях, соответствующих глубинам ~900 км, указывает на возможное присутствие углерода в ее составе.

Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов , формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0С перестройке SiO2 со структурой стишовита в структурный тип CaCl2 (ромбический аналог рутила TiO2), а 2000 км - его последующему преобразованию в фазу со структурой, промежуточной между a-PbO2 и ZrO2 , характеризующуюся более плотной упаковкой кремнийкислородных октаэдров (данные Л.С. Дубровинского с соавторами). Также начиная с этих глубин (~2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного MgSiO3, сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема. При несколько большем давлении (~96 ГПа) и температуре 800 0С установлено проявление политипии у FeO, связанное с образованием структурных фрагментов типа никелина NiAs, чередующихся с антиникелиновыми доменами, в которых атомы Fe расположены в позициях атомов As, а атомы О - в позициях атомов Ni. Вблизи границы D" происходит трансформация Al2O3 со структурой корунда в фазу со структурой Rh2O3, экспериментально смоделированная при давлениях ~100 ГПа, то есть на глубине ~2200-2300 км. " использованием метода мессбауэровской спектроскопии при таком же давлении обоснован переход из высокоспинового (HS) в низкоспиновое состояние (LS) атомов Fe в структуре магнезиовюстита, то есть изменение их электронной структуры. В связи с этим следует подчеркнуть, что структура вюстита FeО при высоком давлении характеризуется нестехиометрией состава, дефектами атомной упаковки, политипией, а также изменением магнитного упорядочения, связанного с изменением электронной структуры (HS => LS - переход) атомов Fe. Отмеченные особенности позволяют рассматривать вюстит как один из наиболее сложных минералов с необычными свойствами, определяющими специфику обогащенных им глубинных зон Земли вблизи границы D".

Рис. 3. Тетрагональная струк- тура Fe7S-возможного компо- нента внутреннего (твердого) ядра, по Д.М. Шерману (1997)

Сейсмологические измерения указывают на то, что и внутреннее (твердое) и внешнее (жидкое) ядра Земли характеризуются меньшей плотностью по сравнению со значением, получаемым на основе модели ядра, состоящего только из металлического железа при тех же физико-химических параметрах. Это уменьшение плотности большинство исследователей связывают с присутствием в ядре таких элементов, как Si, O, S и даже О, образующих сплавы с железом. Среди фаз, вероятных для таких "фаустовских" физико-химических условий (давления ~250 ГПа и температуры 4000-6500 0С), называются Fe3S с хорошо известным структурным типом Cu3Au и Fe7S , структура которого изображена на рис. 3. Другой предполагаемой в ядре фазой является b-Fe, структура которой характеризуется четырехслойной плотнейшей упаковкой атомов Fe. Температура плавления этой фазы оценивается в 5000 0С при давлении 360 ГПа. Присутствие водорода в ядре долгое время вызывало дискуссию из-за его низкой растворимости в железе при атмосферном давлении. Однако недавние экспериме- нты (данные Дж. Бэддинга, Х. Мао и Р. Хэмли (1992)) позволили установить, что гидрид железа FeH может сформироваться при высоких температурах и давлениях и оказывается устойчив при давлениях, превышающих 62 ГПа, что соответствует глубинам ~1600 км. В этой связи присутствие значительных количеств (до 40 мол. %) водорода в ядре вполне допустимо и снижает его плотность до значений, согласующихся с данными сейсмологии.

Можно прогнозировать, что новые данные о структурных изменениях минеральных фаз на больших глубинах позволят найти адекватную интерпретацию и другим важнейшим геофизическим границам, фиксируемым в недрах Земли. Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород . Минеральные преобразования отмечаются также и на глубинах ~850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.

К 80-м годам XX века сейсмологические исследования методами продольных и поперечных сейсмических волн, способных проникать через весь объем Земли, а потому названных объемными в отличие от поверхностных, распределяющихся лишь по ее поверхности, оказались уже настолько существенными, что позволили составлять карты сейсмических аномалий для разных уровней планеты. Фундаментальные работы в этой области выполнены американским сейсмологом А. Дзевонски и его коллегами .

На рис. 4 приведены образцы подобных карт из серии, опубликованной в 1994 году, хотя первые публикации появились на 10 лет раньше. В работе приведены 12 карт для глубинных срезов Земли в интервале от 50 до 2850 км, то есть практически охватывающих всю мантию. На этих интереснейших картах легко видеть, что сейсмическая картина на различных уровнях глубины разная. Это видно по площадям и контурам распространения сейсмоаномальных ареалов , особенностям переходов между ними и вообще по общему облику карт. Отдельные из них отличаются большой пестротой и контрастностью в распределении областей с различными скоростями сейсмических волн (рис. 5), тогда как на других видны более сглаженные и простые соотношения между ними.

В том же, 1994 году вышла в свет аналогичная работа японских геофизиков . В ней приведены 14 карт для уровней от 78 до 2900 км. На обеих сериях карт ясно видна тихоокеанская неоднородность, которая хоть и меняется в очертаниях, но прослеживается вплоть до земного ядра. За пределами этой крупной неоднородности сейсмическая картина усложняется, значительно меняясь при переходе от одного уровня к другому. Но, сколь бы значительно ни было различие этих карт, между отдельными из них просматриваются черты сходства. Они выражаются в некотором подобии в размещении в пространстве положительных и отрицательных сейсмоаномалий и в конечном счете в общих особенностях глубинной сейсмоструктуры. Это позволяет группировать такие карты, что дает возможность выделять внутримантийные оболочки разного сейсмического облика. И такая работа была выполнена . На основе анализа карт японских геофизиков оказалось возможным предложить существенно более дробную структуру мантии Земли , показанную на рис. 5, по сравнению с традиционной моделью земных оболочек.

Принципиально новыми являются два положения:

Как же соотносятся предлагаемые границы глубинных геосфер с ранее обособленными сейсмологами сейсмическими рубежами? Сопоставление показывает, что нижняя граница средней мантии коррелирует с рубежом 1700, глобальная значимость которого подчеркнута в работе . Ее верхняя граница примерно соответствует рубежам 800-900. Это касается верхней мантии, то здесь расхождений нет: ее нижняя граница представлена рубежом 670, а верхняя - рубежом Мохоровичича. Особо обратим внимание на неопределенность верхней границы нижней мантии. В процессе дальнейших исследований, возможно, окажется, что намеченные недавно сейсмические рубежи 1900 и 2000 позволят внести коррективы в ее мощность. Таким образом, результаты сопоставления свидетельствуют о правомерности предлагаемой новой модели структуры мантии.

Заключение

Исследование глубинного строения Земли относится к наиболее крупным и актуальным направлениям геологических наук. Новая стратификация мантии Земли позволяет значительно менее схематично, чем прежде, подойти к сложной проблеме глубинной геодинамики. Различие в сейсмических характеристиках земных оболочек (геосфер), отражающих различие в их физических свойствах и минеральном составе, создает возможности для моделирования геодинамических процессов в каждой из них в отдельности. Геосферы в этом смысле, как теперь совершенно ясно, обладают известной автономностью. Однако эта исключительно важная тема лежит за рамками данной статьи. От дальнейшего развития сейсмотомографии, как и некоторых других геофизических исследований, а также изучения минерального и химического состава глубин будут зависеть существенно более обоснованные построения в отношении состава, структуры, геодинамики и эволюции Земли в целом.

Список литературы

Geotimes. 1994. Vol. 39, N 6. P. 13-15.

Ross A. The Earths Mantle Remodelled // Nature. 1997. Vol. 385, N 6616. P. 490.

Thompson A.B. Water in the EarthХs Upper Mantle // Nature. 1992. Vol. 358, N 6384. P. 295-302.

Пущаровский Д.Ю. Глубинные минералы Земли // Природа. 1980. N 11. С. 119-120.

Su W., Woodward R.L., Dziewonski A.M. Degree 12 Model of Shear Velocity Heterogeneity in the Mantle // J. Geophys. Res. 1994. Vol. 99, N B4. P. 6945-6980.

J. Geol. Soc. Japan. 1994. Vol. 100, N 1. P. VI-VII.

Пущаровский Ю.М. Сейсмотомография и структура мантии: Тектонический ракурс // Доклады АН. 1996. Т. 351, N 6. С. 805-809.

Мантия Земли - это силикатная оболочка Земли, сложенная преимущественно перидотитами - породами, состоящими из силикатов магния, железа, кальция и др. Частичное плавление мантийных пород порождает базальтовые и им подобные расплавы, формирующие при подъёме к поверхности земную кору .

Мантия составляет 67 % всей массы Земли и около 83 % всего объёма Земли. Она простирается от глубин 5-70 километров ниже границы с земной корой, до границы с ядром на глубине 2900 км. Мантия расположена в огромном диапазоне глубин, и с увеличением давления в веществе происходят фазовые переходы, при которых минералы приобретают всё более плотную структуру. Наиболее значительное превращение происходит на глубине 660 километров. Термодинамика этого фазового перехода такова, что мантийное вещество ниже этой границы не может проникнуть через неё, и наоборот. Выше границы 660 километров находится верхняя мантия, а ниже, соответственно, нижняя. Эти две части мантии имеют различный состав и физические свойства. Хотя сведения о составе нижней мантии ограничены, и число прямых данных весьма невелико, можно уверенно утверждать, что её состав со времён формирования Земли изменился значительно меньше, чем верхней мантии, породившей земную кору.

Теплоперенос в мантии происходит путём медленной конвекции, посредством пластической деформации минералов . Скорости движения вещества при мантийной конвекции составляют порядка нескольких сантиметров в год. Эта конвекция приводит в движение литосферные плиты. Конвекция в верхней мантии происходит раздельно. Существуют модели, которые предполагают ещё более сложную структуру конвекции.

Сейсмическая модель строения земли

Состав и строение глубинных оболочек Земли в последние десятилетия продолжают оставаться одной из наиболее интригующих проблем современной геологии . Число прямых данных о веществе глубинных зон весьма ограниченно. В этом плане особое место занимает минеральный агрегат из кимберлитовой трубки Лесото (Южная Африка), который рассматривается как представитель мантийных пород, залегающих на глубине ~250 км. Керн, поднятый из самой глубокой в мире скважины, пробуренной на Кольском полуострове и достигшей отметки 12 262 м, существенно расширил научные представления о глубинных горизонтах земной коры - тонкой приповерхностной пленке земного шара. Вместе с тем, новейшие данные геофизики и экспериментов, связанных с исследованием структурных превращений минералов, уже сейчас позволяют смоделировать многие особенности строения, состава и процессов, происходящих в глубинах Земли, знание которых способствует решению таких ключевых проблем современного естествознания, как формирование и эволюция планеты, динамика земной коры и мантии, источники минеральных ресурсов, оценка риска захоронения опасных отходов на больших глубинах, энергетические ресурсы Земли и др.

Широко известная модель внутреннего строения Земли (деление ее на ядро, мантию и земную кору) разработана сейсмологами Г. Джеффрисом и Б. Гутенбергом еще в первой половине XX века. Решающим фактором при этом оказалось обнаружение резкого снижения скорости прохождения сейсмических волн внутри земного шара на глубине 2900 км при радиусе планеты 6371 км. Скорость прохождения продольных сейсмических волн непосредственно над указанным рубежом равна 13,6 км/с, а под ним - 8,1 км/с. Это и есть граница мантии и ядра.

Соответственно радиус ядра составляет 3471 км. Верхней границей мантии служит сейсмический раздел Мохоровичича (Мохо, М), выделенный югославским сейсмологом А. Мохоровичичем (1857-1936) еще в 1909 году. Он отделяет земную кору от мантии. На этом рубеже скорости продольных волн, прошедших через земную кору, скачкообразно увеличиваются с 6,7-7,6 до 7,9-8,2 км/с, однако происходит это на разных глубинных уровнях. Под континентами глубина раздела М (то есть подошвы земной коры) составляет первые десятки километров, причем под некоторыми горными сооружениями (Памир, Анды) может достигать 60 км, тогда как под океанскими впадинами, включая и толщу воды, глубина равна лишь 10-12 км. Вообще же земная кора в этой схеме вырисовывается как тонкая скорлупа, в то время как мантия распространяется в глубину на 45% земного радиуса.

Но в середине XX века в науку вошли представления о более дробном глубинном строении Земли. На основании новых сейсмологических данных оказалось возможным разделить ядро на внутреннее и внешнее, а мантию - на нижнюю и верхнюю. Эта модель, получившая широкое распространение, используется и в настоящее время. Начало ей положил австралийский сейсмолог К.Е. Буллен, предложивший в начале 40-х годов схему разделения Земли на зоны, которые обозначил буквами: А - земная кора, В - зона в интервале глубин 33-413 км, С - зона 413-984 км, D - зона 984-2898 км, Д - 2898-4982 км, F - 4982-5121 км, G - 5121-6371 км (центр Земли). Эти зоны отличаются сейсмическими характеристиками. Позднее зону D он разделил на зоны D" (984-2700 км) и D" (2700-2900 км). В настоящее время эта схема значительно видоизменена и лишь слой D" широко используется в литературе. Его главная характеристика - уменьшение градиентов сейсмических скоростей по сравнению с вышележащей областью мантии.

Внутреннее ядро, имеющее радиус 1225 км, твердое и обладает большой плотностью - 12,5 г/см 3 . Внешнее ядро жидкое, его плотность 10 г/см 3 . На границе ядра и мантии отмечается резкий скачок не только в скорости продольных волн, но и в плотности. В мантии она снижается до 5,5 г/см 3 . Слой D", находящийся в непосредственном соприкосновении с внешним ядром, испытывает его влияние, поскольку температуры в ядре значительно превышают температуры мантии. Местами данный слой порождает огромные, направленные к поверхности Земли сквозь мантийные тепломассопотоки, называемые плюмами. Они могут проявляться на планете в виде крупных вулканических областей, как, например, на Гавайских островах, в Исландии и других регионах.

Верхняя граница слоя D" неопределенна; ее уровень от поверхности ядра может варьировать от 200 до 500 км и более. Таким образом, можно заключить, что данный слой отражает неравномерное и разноинтенсивное поступление энергии ядра в область мантии.

Границей нижней и верхней мантии в рассматриваемой схеме служит сейсмический раздел, лежащий на глубине 670 км. Он имеет глобальное распространение и обосновывается скачком сейсмических скоростей в сторону их увеличения, а также возрастанием плотности вещества нижней мантии. Этот раздел является также и границей изменений минерального состава пород в мантии.

Таким образом, нижняя мантия, заключенная между глубинами 670 и 2900 км, простирается по радиусу Земли на 2230 км. Верхняя мантия имеет хорошо фиксирующийся внутренний сейсмический раздел, проходящий на глубине 410 км. При переходе этой границы сверху вниз сейсмические скорости резко возрастают. Здесь, как и на нижней границе верхней мантии, происходят существенные минеральные преобразования.

Верхнюю часть верхней мантии и земную кору слитно выделяют как литосферу, являющуюся верхней твердой оболочкой Земли, в противоположность гидро- и атмосфере. Благодаря теории тектоники литосферных плит термин «литосфера» получил широчайшее распространение. Теория предполагает движение плит по астеносфере - размягченном, частично, возможно, жидком глубинном слое пониженной вязкости. Однако сейсмология не показывает выдержанной в пространстве астеносферы. Для многих областей выявлены несколько астеносферных слоев, расположенных по вертикали, а также прерывистость их по горизонтали. Особенно определенно их чередование фиксируется в пределах континентов, где глубина залегания астеносферных слоев (линз) варьирует от 100 км до многих сотен. Под океанскими абиссальными впадинами астеносферный слой лежит на глубинах 70-80 км и менее. Соответственно нижняя граница литосферы фактически является неопределенной, а это создает большие трудности для теории кинематики литосферных плит, что и отмечается многими исследователями.

Современные данные о сейсмических границах

С проведением сейсмологических исследований, появляются предпосылки для выделения новых сейсмических границ. Глобальными принято считать границы 410, 520, 670, 2900 км, где увеличение скоростей сейсмических волн особенно заметно. Наряду с ними выделяются промежуточные границы: 60, 80, 220, 330, 710, 900, 1050, 2640 км. Дополнительно имеются указания геофизиков на существование границ 800, 1200-1300, 1700, 1900-2000 км. Н.И. Павленковой недавно в качестве глобальной выделена граница 100, отвечающая нижнему уровню разделения верхней мантии на блоки. Промежуточные границы имеют разное пространственное распространение, что свидетельствует о латеральной изменчивости физических свойств мантии, от которых они и зависят. Глобальные границы представляют иную категорию явлений. Они отвечают глобальным изменениям мантийной среды по радиусу Земли.

Отмеченные глобальные сейсмические границы используются при построении геологических и геодинамических моделей, в то время как промежуточные в этом смысле пока внимания почти не привлекали. Между тем различия в масштабах и интенсивности их проявления создают эмпирическую основу для гипотез, касающихся явлений и процессов в глубинах планеты.

Состав верхней мантии

Проблема состава, структуры и минеральных ассоциаций глубинных земных оболочек или геосфер, конечно, еще далека от окончательного решения, однако новые экспериментальные результаты и идеи существенно расширяют и детализируют соответствующие представления.

Согласно современным взглядам, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и О. Предлагаемые модели состава геосфер в первую очередь основываются на различии соотношений указанных элементов (вариации Mg/(Mg + Fe) = 0,8-0,9; (Mg + Fe)/Si = 1,2Р1,9), а также на различиях в содержании Al и некоторых других более редких для глубинных пород элементов. В соответствии с химическим и минералогическим составом эти модели получили свои названия: пиролитовая (главные минералы - оливин, пироксены и гранат в отношении 4: 2: 1), пиклогитовая (главные минералы - пироксен и гранат, а доля оливина снижается до 40%) и эклогитовая, в которой наряду с характерной для эклогитов пироксен-гранатовой ассоциацией присутствуют и некоторые более редкие минералы, в частности Al-содержащий кианит Al 2 SiO 5 (до 10 вес. %). Однако все эти петрологические модели относятся прежде всего к породам верхней мантии, простирающейся до глубин ~670 км. В отношении валового состава более глубоких геосфер лишь допускается, что отношение оксидов двухвалентных элементов (МО) к кремнезему (МО/SiO 2) ~ 2, оказываясь ближе к оливину (Mg, Fe) 2 SiO 4 , чем к пироксену (Mg, Fe)SiO 3 , а среди минералов преобладают перовскитовые фазы (Mg, Fe)SiO 3 с различными структурными искажениями, магнезиовюстит (Mg, Fe)O со структурой типа NaCl и некоторые другие фазы в значительно меньших количествах.

Все предложенные модели весьма обобщенные и гипотетичные. Пиролитовая модель верхней мантии с преобладанием оливина предполагает ее значительно большую близость по химическому составу со всей более глубокой мантией. Наоборот, пиклогитовая модель предполагает существование определенного химического контраста между верхней и остальной мантиями. Более частная эклогитовая модель допускает присутствие в верхней мантии отдельных эклогитовых линз и блоков.

Большой интерес представляет попытка согласовать структурно-минералогические и геофизические данные, относящиеся к верхней мантии. Уже около 20 лет допускается, что увеличение скоростей сейсмических волн на глубине ~410 км преимущественно связано со структурной перестройкой оливина a-(Mg, Fe) 2 SiO 4 в вадслеит b-(Mg, Fe) 2 SiO 4 , сопровождающейся образованием более плотной фазы с большими значениями коэффициентов упругости. Согласно геофизическим данным, на таких глубинах в недрах Земли скорости сейсмических волн возрастают на 3-5%, тогда как структурная перестройка оливина в вадслеит (в соответствии со значениями их модулей упругости) должна сопровождаться увеличением скоростей сейсмических волн примерно на 13%. Вместе с тем результаты экспериментальных исследований оливина и смеси оливин-пироксен при высоких температурах и давлениях выявили полное совпадение рассчитанного и экспериментального увеличения скоростей сейсмических волн в интервале глубин 200-400 км. Поскольку оливин обладает примерно такой же упругостью, как и высокоплотные моноклинные пироксены, эти данные должны были бы указывать на отсутствие в составе нижележащей зоны граната, обладающего высокой упругостью, присутствие которого в мантии неизбежно вызвало бы более значительное увеличение скоростей сейсмических волн. Однако эти представления о безгранатовой мантии вступали в противоречие с петрологическими моделями ее состава.

Так появилась идея о том, что скачок в скоростях сейсмических волн на глубине 410 км связан в основном со структурной перестройкой пироксен-гранат внутри обогащенных Na частей верхней мантии. Такая модель предполагает почти полное отсутствие конвекции в верхней мантии, что противоречит современным геодинамическим представлениям. Преодоление этих противоречий можно связать с недавно предложенной более полной моделью верхней мантии, допускающей вхождение атомов железа и водорода в структуру вадслеита.

В то время как полиморфный переход оливина в вадслеит не сопровождается изменением химического состава, в присутствии граната возникает реакция, приводящая к образованию вадслеита, обогащенного Fe по сравнению с исходным оливином. Более того, вадслеит может содержать значительно больше по сравнению с оливином атомов водорода. Участие атомов Fe и Н в структуре вадслеита приводит к уменьшению ее жесткости и соответственно уменьшению скоростей распространения сейсмических волн, проходящих сквозь этот минерал.

Кроме того, образование обогащенного Fe вадслеита предполагает вовлечение в соответствующую реакцию большего количества оливина, что должно сопровождаться изменением химического состава пород вблизи раздела 410. Идеи об этих трансформациях подтверждаются современными глобальносейсмическими данными. В целом минералогический состав этой части верхней мантии представляется более или менее ясным. Если говорить о пиролитовой минеральной ассоциации, то ее преобразование вплоть до глубин ~800 км исследовано достаточно детально. При этом глобальной сейсмической границе на глубине 520 км соответствует перестройка вадслеита b-(Mg, Fe) 2 SiO 4 в рингвудит - g-модификацию (Mg, Fe) 2 SiO 4 со структурой шпинели. Трансформация пироксен (Mg, Fe)SiO 3 гранат Mg 3 (Fe, Al, Si) 2 Si 3 O 12 осуществляется в верхней мантии в более широком интервале глубин. Таким образом, вся относительно гомогенная оболочка в интервале 400-600 км верхней мантии в основном содержит фазы со структурными типами граната и шпинели.

Все предложенные в настоящее время модели состава мантийных пород допускают содержание в них Al 2 O 3 в количестве ~4 вес. %, которое также влияет на специфику структурных превращений. При этом отмечается, что в отдельных областях неоднородной по составу верхней мантии Al может быть сосредоточен в таких минералах, как корунд Al 2 O 3 или кианит Al 2 SiO 5 , который при давлениях и температурах, cоответствующих глубинам ~450 км, трансформируется в корунд и стишовит - модификацию SiO 2 , структура которой содержит каркас из SiO 6 октаэдров. Оба этих минерала сохраняются не только в низах верхней мантии, но и глубже.

Важнейший компонент химического состава зоны 400-670 км - вода, содержание которой, по некоторым оценкам, составляет ~0,1 вес. % и присутствие которой в первую очередь связывают с Mg-силикатами. Количество запасенной в этой оболочке воды столь значительно, что на поверхности Земли оно составило бы слой мощностью 800 м.

Состав мантии ниже границы 670 км

Проведенные в последние два-три десятилетия исследования структурных переходов минералов с использованием рентгеновских камер высокого давления позволили смоделировать некоторые особенности состава и структуры геосфер глубже границы 670 км .

В этих экспериментах исследуемый кристалл помещается между двумя алмазными пирамидами (наковальнями), при сжатии которых создаются давления, соизмеримые с давлениями внутри мантии и земного ядра. Тем не менее в отношении этой части мантии, на долю которой приходится более половины всех недр Земли, по-прежнему остается много вопросов. В настоящее время большинство исследователей согласны с идеей о том, что вся эта глубинная (нижняя в традиционном понимании) мантия в основном состоит из перовскитоподобной фазы (Mg,Fe)SiO 3 , на долю которой приходится около 70% ее объема (40% объема всей Земли), и магнезиовюстита (Mg, Fe)O (~20 %). Оставшиеся 10% составляют стишовит и оксидные фазы, содержащие Ca, Na, K, Al и Fe, кристаллизация которых допускается в структурных типах ильменита-корунда (твердый раствор (Mg, Fe)SiO 3 -Al 2 O 3), кубического перовскита (CaSiO 3) и Са-феррита (NaAlSiO 4). Образование этих соединений связано с различными структурными трансформациями минералов верхней мантии. При этом одна из основных минеральных фаз относительно гомогенной оболочки, лежащей в интервале глубин 410-670 км, - шпинелеподобный рингвудит трансформируется в ассоциацию (Mg, Fe)-перовскита и Mg-вюстита на рубеже 670 км, где давление составляет ~24 ГПа. Другой важнейший компонент переходной зоны - представитель семейства граната пироп Mg 3 Al 2 Si 3 O 12 испытывает превращение с образованием ромбического перовскита (Mg, Fe)SiO 3 и твердого раствора корунда-ильменита (Mg, Fe)SiO 3 - Al 2 O 3 при несколько больших давлениях. С этим переходом связывают изменение скоростей сейсмических волн на рубеже 850-900 км, соответствующем одной из промежуточных сейсмических границ. Трансформация Саграната андрадита при меньших давлениях ~21 ГПа приводит к образованию еще одного упомянутого выше важного компонента Ca 3 Fe 2 3+ Si 3 O 12 нижней мантии - кубического Саперовскита CaSiO 3 . Полярное отношение между основными минералами этой зоны (Mg,Fe)- перовскитом (Mg,Fe)SiO 3 и Mg-вюститом (Mg, Fe)O варьирует в достаточно широких пределах и на глубине ~1170 км при давлении ~29 ГПа и температурах 2000-2800 0 С меняется от 2: 1 до 3: 1.

Исключительная стабильность MgSiO 3 со структурой типа ромбического перовскита в широком диапазоне давлений, соответствующих глубинам низов мантии, позволяет считать его одним из главных компонентов этой геосферы. Основанием для этого заключения послужили эксперименты, в ходе которых образцы Mg-перовскита MgSiO 3 были подвергнуты давлению, в 1,3 млн раз превышающему атмосферное, и одновременно на образец, помещенный между алмазными наковальнями, воздействовали лазерным лучом с температурой около 2000 0 С. Таким образом, смоделировали условия, существующие на глубинах ~2800 км, то есть вблизи нижней границы нижней мантии. Оказалось, что ни во время, ни после эксперимента минерал не изменил свою структуру и состав. Таким образом, Л. Лиу, а также Е. Ниттл и Е. Жанлоз пришли к выводу, согласно которому стабильность Mg-перовскита позволяет рассматривать его как наиболее распространенный минерал на Земле, составляющий, по-видимому, почти половину ее массы.

Не меньшей устойчивостью отличается и вюстит Fe x O, состав которого в условиях нижней мантии характеризуется значением стехиометрического коэффициента х < 0,98, что означает одновременное присутствие в его составе Fe 2+ и Fe 3+ . При этом, согласно экспериментальным данным, температура плавления вюстита на границе нижней мантии и слоя D", по данным Р. Болера (1996), оценивается в ~5000 K, что намного выше 3800 0 С, предполагаемой для этого уровня (при средних температурах мантии ~2500 0 С в основании нижней мантии допускается повышение температуры приблизительно на 1300 0 С). Таким образом, вюстит должен сохраниться на этом рубеже в твердом состоянии, а признание фазового контраста между твердой нижней мантией и жидким внешним ядром требует более гибкого подхода и уж во всяком случае не означает четко очерченной границы между ними.

Следует отметить, что в преобладающих на больших глубинах перовскитоподобных фазах может содержаться весьма ограниченное количество Fe, а повышенные концентрации Fe среди минералов глубинной ассоциации характерны лишь для магнезиовюстита. При этом для магнезиовюстита доказана возможность перехода под воздействием высоких давлений части содержащегося в нем двухвалентного железа в трехвалентное, остающееся в структуре минерала, с одновременным выделением соответствующего количества нейтрального железа. На основе этих данных сотрудники геофизической лаборатории Иститута Карнеги Х. Мао, П. Белл и Т. Яги выдвинули новые идеи о дифференциации вещества в глубинах Земли. На первом этапе благодаря гравитационной неустойчивости магнезиовюстит погружается на глубину, где под воздействием давления из него выделяется некоторая часть железа в нейтральной форме. Остаточный магнезиовюстит, характеризующийся более низкой плотностью, поднимается в верхние слои, где вновь смешивается с перовскитоподобными фазами. Контакт с ними сопровождается восстановлением стехиометрии (то есть целочисленного отношения элементов в химической формуле) магнезиовюстита и приводит к возможности повторения описанного процесса. Новые данные позволяют несколько расширить набор вероятных для глубокой мантии химических элементов. Например, обоснованная Н. Росс (1997) устойчивость магнезита при давлениях, соответствующих глубинам ~900 км, указывает на возможное присутствие углерода в ее составе.

Выделение отдельных промежуточных сейсмических границ, расположенных ниже рубежа 670, коррелирует с данными о структурных трансформациях мантийных минералов, формы которых могут быть весьма разнообразными. Иллюстрацией изменения многих свойств различных кристаллов при высоких значениях физико-химических параметров, соответствующих глубинной мантии, может служить, согласно Р. Жанлозу и Р. Хейзену, зафиксированная в ходе экспериментов при давлениях 70 гигапаскалей (ГПа) (~1700 км) перестройка ионноковалентных связей вюстита в связи с металлическим типом межатомных взаимодействий. Рубеж 1200 может соответствовать предсказанной на основе теоретических квантово-механических расчетов и впоследствии смоделированной при давлении ~45 ГПа и температуре ~2000 0 С перестройке SiO 2 со структурой стишовита в структурный тип CaCl 2 (ромбический аналог рутила TiO 2), а 2000 км - его последующему преобразованию в фазу со структурой, промежуточной между a-PbO 2 и ZrO 2 , характеризующуюся более плотной упаковкой кремнийкислородных октаэдров (данные Л.С. Дубровинского с соавторами). Также начиная с этих глубин (~2000 км) при давлениях 80-90 ГПа допускается распад перовскитоподобного MgSiO 3 , сопровождающийся возрастанием содержания периклаза MgO и свободного кремнезема. При несколько большем давлении (~96 ГПа) и температуре 800 0 С установлено проявление политипии у FeO, связанное с образованием структурных фрагментов типа никелина NiAs, чередующихся с антиникелиновыми доменами, в которых атомы Fe расположены в позициях атомов As, а атомы О - в позициях атомов Ni. Вблизи границы D" происходит трансформация Al 2 O 3 со структурой корунда в фазу со структурой Rh 2 O 3 , экспериментально смоделированная при давлениях ~100 ГПа, то есть на глубине ~2200-2300 км. Использованием метода мессбауэровской спектроскопии при таком же давлении обоснован переход из высокоспинового (HS) в низкоспиновое состояние (LS) атомов Fe в структуре магнезиовюстита, то есть изменение их электронной структуры. В связи с этим следует подчеркнуть, что структура вюстита FeО при высоком давлении характеризуется нестехиометрией состава, дефектами атомной упаковки, политипией, а также изменением магнитного упорядочения, связанного с изменением электронной структуры (HS => LS - переход) атомов Fe. Отмеченные особенности позволяют рассматривать вюстит как один из наиболее сложных минералов с необычными свойствами, определяющими специфику обогащенных им глубинных зон Земли вблизи границы D".

Сейсмологические измерения указывают на то, что и внутреннее (твердое) и внешнее (жидкое) ядра Земли характеризуются меньшей плотностью по сравнению со значением, получаемым на основе модели ядра, состоящего только из металлического железа при тех же физико-химических параметрах. Это уменьшение плотности большинство исследователей связывают с присутствием в ядре таких элементов, как Si, O, S и даже О, образующих сплавы с железом. Среди фаз, вероятных для таких "фаустовских" физико-химических условий (давления ~250 ГПа и температуры 4000-6500 0 С), называются Fe 3 S с хорошо известным структурным типом Cu 3 Au и Fe 7 S. Другой предполагаемой в ядре фазой является b-Fe, структура которой характеризуется четырехслойной плотнейшей упаковкой атомов Fe. Температура плавления этой фазы оценивается в 5000 0 С при давлении 360 ГПа. Присутствие водорода в ядре долгое время вызывало дискуссию из-за его низкой растворимости в железе при атмосферном давлении. Однако недавние эксперименты (данные Дж. Бэддинга, Х. Мао и Р. Хэмли (1992)) позволили установить, что гидрид железа FeH может сформироваться при высоких температурах и давлениях и оказывается устойчив при давлениях, превышающих 62 ГПа, что соответствует глубинам ~1600 км. В этой связи присутствие значительных количеств (до 40 мол. %) водорода в ядре вполне допустимо и снижает его плотность до значений, согласующихся с данными сейсмологии.

Можно прогнозировать, что новые данные о структурных изменениях минеральных фаз на больших глубинах позволят найти адекватную интерпретацию и другим важнейшим геофизическим границам, фиксируемым в недрах Земли. Общее заключение таково, что на таких глобальных сейсмических рубежах, как 410 и 670 км, происходят значительные изменения в минеральном составе мантийных пород. Минеральные преобразования отмечаются также и на глубинах ~850, 1200, 1700, 2000 и 2200-2300 км, то есть в пределах нижней мантии. Это весьма важное обстоятельство, позволяющее отказаться от представления об ее однородной структуре.

В мантии находится большая часть вещества Земли. Мантия есть и на других планетах. Земная мантия находится в диапазоне от 30 до 2 900 км.

В ее пределах по сейсмическим данным выделяются: верхняя мантия слой В глубиной до 400 км и С до 800-1000 км (некоторые исследователи слой С называют средней мантией); нижняя мантия слой D до глубины 2700 с переходным слоем D1 от 2700 до 2900 км.

Границей между корой и мантией служит граница Мохоровичича или, сокращенно, Мохо. На ней происходит резкое увеличение сейсмических скоростей - от 7 до 8-8,2 км/с. Находится эта граница на глубине от 7 (под океанами) до 70 километров (под складчатыми поясами). Мантия Земли подразделяется на верхнюю мантию и нижнюю мантию. Границей между этими геосферами служит слой Голицына, располагающийся на глубине около 670 км.

Строение Земли по представления различных исследователей

Отличие состава земной коры и мантии - следствие их происхождения: исходно однородная Земля в результате частичного плавления разделилась на легкоплавкую и легкую часть - кору и плотную и тугоплавкую мантию.

Источники информации о мантии

Мантия Земли недоступна непосредственному исследованию: она не выходит на земную поверхность и не достигнута глубинным бурением. Поэтому большая часть информации о мантии получена геохимическими и геофизическими методами. Данные же о её геологическом строении очень ограничены.

Мантию изучают по следующим данным:

  • Геофизические данные. В первую очередь данные о скоростях сейсмических волн, электропроводности и силе тяжести.
  • Мантийные расплавы - базальты , коматииты , кимберлиты , лампроиты , карбонатиты и некоторые другие магматические горные породы образуются в результате частичного плавления мантии. Состав расплава является следствием состава плавившихся пород, межанизма плавления и физико-химических параметров процесса плавления. В целом, реконструкция источника по расплаву - сложная задача.
  • Фрагменты мантийных пород, выносимые на поверхность мантийными же расплавами - кимберлитами, щелочными базальтами и др. Это ксенолиты , ксенокристы и алмазы . Алмазы занимают среди источников информации о мантии особое место. Именно в алмазах установлены самые глубинные минералы, которые, возможно, происходят даже из нижней мантии. В таком случае эти алмазы представляют собой самые глубокие фрагменты земли, доступные непосредственному изучению.
  • Мантийные породы в составе земной коры. Такие комплексы в наибольшей степени соответствуют мантии, но и отличаются от неё. Самое главное различие - в самом факте их нахождения в составе земной коры, из чего следует, что они образовались в результате не совсем обычных процессов и, возможно, не отражают типичную мантию. Они встречаются в следующих геодинамических обстановках:
  1. Альпинотипные гипербазиты - части мантии, внедренные в земную кору в результате горообразования. Наиболее распространены в Альпах , от которых и произошло название.
  2. Офиолитовые гипербазиты - передотиты в составе офиолитовых комлексов - частей древней океанической коры .
  3. Абиссальные перидотиты - выступы мантийных пород на дне океанов или рифтов .

Эти комплексы имеют то преимущество, что в них можно наблюдать геологические соотношения между различными породами.

Недавно было объявлено, что японские исследователи планируют предпринять попытку пробурить океаническую кору до мантии. Для этого построен кораблю Тикю . Начало бурения планируется на 2007 год.

Основной недостаток полученной из этих фрагментов информации - невозможность установления геологических соотношений между различными типами пород. Это кусочки паззла. Как сказал классик, «определение состава мантии по ксенолитам напоминает попытки определения геологического строения гор по галькам, которые из них вынесла речка».

Состав мантии

Мантия сложена главным образом ультаосновными породами: перидотитами , (лерцолитами , гарцбургитами , верлитами , пироксенитами), дунитами и в меньшей степени основными породами - эклогитами .

Также среди мантийных пород установлены редкие разновидности пород, не встречающиеся в земной коре. Это различные флогопитовые перидотиты, гроспидиты, карбонатиты.

Содержание основных элементов в мантии Земли в массовых процентах
Элемент Концентрация Оксид Концентрация
44.8
21.5 SiO 2 46
22.8 MgO 37.8
5.8 FeO 7.5
2.2 Al 2 O 3 4.2
2.3 CaO 3.2
0.3 Na 2 O 0.4
0.03 K 2 O 0.04
Сумма 99.7 Сумма 99.1

Строение мантии

Процессы, идущие в мантии, оказывают самое непосредственное влияние на земную кору и поверхность земли, являются причиной движения континентов, вулканизма, землетрясений, горообразования и формирования рудных месторождений. Всё больше свидетельств того, что на саму мантию активно влияет металлическое ядро планеты.

Конвекция и плюмы

Список литературы

  • Пущаровский Д.Ю., Пущаровский Ю.М. Состав и строение мантии Земли // Соросовский Образовательный Журнал, 1998, No 11, с. 111–119 .
  • Ковтун А.А. Электропроводность Земли // Соросовский Образовательный Журнал, 1997, No 10, с. 111–117

Источник : Короновский Н.В., Якушова А.Ф. "Основы геологии", М., 1991

Ссылки

  • Images of the Earth"s Crust & Upper Mantle // International Geological Correlation Programme (IGCP), Project 474
Атмосфера
Биосфера

Имеет особый состав, отличаясь от состава покрывающей ее земной коры. Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты Земли в результате мощных тектонических поднятий с выносом мантийного материала. К таким породам относятся ультраосновные породы - дуниты, перидотиты, залегающие в горных системах. Горные породы островов Св. Павла в средней части Атлантического океана, по всем геологическим данным, относятся к мантийному материалу. Также к мантийному материалу относятся обломки пород, собранные советскими океанографическими экспедициями со дна Индийского океана в области Индоокеанского хребта. Что касается минералогического состава мантии, то здесь можно ожидать существенных изменений, начиная от верхних горизонтов и кончая основанием мантии в связи с ростом давления. Верхняя мантия сложена преимущественно силикатами (оливинами, пироксенами, гранатами), устойчивыми и пределах относительно низких давлений. Нижняя мантия сложена минералами высокой плотности.

Наиболее распространенным компонентом мантии является окись кремния в составе силикатов. Но при высоких давлениях кремнезем может перейти в более плотную полиморфную модификацию - стишовит. Этот минерал получен советским исследователем Стишовым и назван так по его имени. Если обычный кварц имеет плотность 2,533 r/см 3 , то стишовит, образующийся из кварца при давлении 150 000 бар, имеет плотность 4,25 г/см 3 .

Кроме того, в нижней мантии вероятны и более плотные минеральные модификации других соединений. Исходя из изложенного выше, можно с достаточным основанием полагать, что с ростом давления обычные железисто-магнезиальные силикаты оливины и пироксены разлагаются на окислы, которые в отдельности имеют более высокую плотность, чем силикаты, которые оказываются устойчивыми в верхней мантии.

Верхняя мантия состоит преимущественно из железисто-магнезиальных силикатов (оливинов, пироксенов). Некоторые алюмосиликаты могут переходить здесь в более плотные минералы типа гранатов. Под материками и океанами верхняя мантия имеет разные свойства и, вероятно, различный состав. Можно только предположить, что в области континентов мантия более дифференцирована и имеет меньше SiO 2 за счет концентрации этого компонента в алюмосиликатной коре. Под океанами мантия менее дифференцирована. В верхней мантии могут возникать более плотные полиморфные модификации оливина со структурой шпинели и др.

Переходной слой мантии характеризуется постоянным возрастанием скоростей сейсмических волн с глубиной, что свидетельствует о появлении более плотных полиморфных модификаций вещества. Здесь, очевидно, появляются окислы FeO, MgO, GaO, SiO 2 в форме вюстита, периклаза, извести и стишовита. Количество их с глубиной возрастает, а количество обычных силикатов уменьшается, и глубже 1000 км они составляют ничтожную долю.

Нижняя мантия в пределах глубин 1000-2900 км практически полностью состоит из плотных разновидностей минералов - окислов, о чем свидетельствует ее высокая плотность в пределах 4,08-5,7 г/см 3 . Под влиянием возросшего давления плотные окислы сжимаются, еще более увеличивая свою плотность. В нижней мантии также, вероятно, увеличивается содержание железа.

Ядро Земли. Вопрос о составе и физической природе ядра нашей планеты относится к наиболее волнующим и загадочным проблемам геофизики и геохимии. Только за последнее время наметилось небольшое просветление в решении этой проблемы.

Обширное центральное ядро Земли, занимающее внутреннюю область глубже 2900 км, состоит из большого внешнего ядра и малого внутреннего. По сейсмическим данным, внешнее ядро обладает свойствами жидкости. Оно не пропускает поперечных сейсмических волн. Отсутствие сил сцепления между ядром и нижней мантией, характер приливов в мантии и коре, особенности перемещения оси вращения Земли в пространстве, характер прохождения сейсмических волн глубже 2900 км говорят о том, что внешнее ядро Земли жидкое.

Некоторыми авторами состав ядра для химически однородной модели Земли допускался силикатным, причем под влиянием высокого давления силикаты перешли в «металлизированное» состояние, приобретая атомную структуру , у которых внешние электроны являются общими. Однако перечисленные выше геофизические данные противоречат предположению о «металлизированном» состоянии силикатного материала в ядре Земли. В частности, отсутствие сцепления между ядром и мантией не может быть совместимо с «металлизированным» твердым ядром, что допускалось в гипотезе Лодочникова-Рамзая. Очень важные косвенные данные о ядре Земли получены во время опытов с силикатами под большим давлением. При этом давления достигали 5 млн. атм. Между тем в центре Земли давление 3 млн. атм., а на границе ядра — приблизительно 1 млн. атм. Таким образом, экспериментальным путем удалось перекрыть давления, существующие в самых глубинах Земли. При этом для силикатов наблюдалось только линейное сжатие без скачка и перехода в «металлизированное» состояние. Кроме того, при высоких и давлениях в пределах глубин 2900-6370 км силикаты не могут находиться в жидком состоянии, как и окислы. Их температура плавления возрастает с увеличением давления.

За последние годы получены весьма интересные результаты исследований по влиянию очень высоких давлений на температуру плавления металлов. Оказалось, что ряд металлов при высоких давлениях (300 тыс. атм. и выше) переходит в жидкое состояние при относительно невысоких температурах. По некоторым расчетам, сплав железа с примесью никеля и кремния (76% Fe, 10% Ni, 14% Si) на глубине 2900 км под влиянием высокого давления должен находиться в жидком состоянии уже при температуре 1000° С. Но температура на этих глубинах, по самым скромным оценкам геофизиков, должна быть значительно выше.

Поэтому в свете современных данных геофизики и физики высоких давлений, а также данных космохимии, указывающих на ведущую роль железа как наиболее обильного металла в космосе, следует допустить, что ядро Земли в основном сложено жидким железом с примесью никеля. Однако расчеты американского геофизика Ф. Берча показали, что плотность земного ядра на 10% ниже, чем железоникелевый сплав при температурах и давлениях, господствующих в ядре. Отсюда следует, что металлическое ядро Земли должно содержать значительное количество (10-20%) какого-то легкого . Из всех наиболее легких и распространенных элементов максимально вероятными |оказываются кремний (Si) и сера (S). Наличие одного или другого способно объяснить наблюдаемые физические свойства земного ядра. Поэтому вопрос о том, что является примесью земного ядра - кремний или сера, оказывается дискуссионным и связан со способом формирования нашей планеты в делом.

А. Ридгвуд в 1958 г. допустил, что земное ядро содержит кремний в качестве легкого элемента, аргументируя такое предположение тем, что элементарный кремний в количестве нескольких весовых процентов встречается в металлической фазе некоторых восстановленных хондритовых метеоритов (энстатитовых). Однако других доводов в пользу присутствия кремния в земном ядре нет.

Предположение о том, что в земном ядре имеется сера, вытекает из сравнения ее распространения в хондритовом материале метеоритов и мантии Земли. Так, сопоставление элементарных атомных соотношений некоторых летучих элементов в смеси коры и мантии и в хондритах показывает резкий недостаток серы. В материале мантии и коры концентрация серы на три порядка ниже, чем в среднем материале солнечной системы, в качестве которого принимаются хондриты.

Возможность потери серы при высоких температурах первичной Земли отпадает, поскольку другие более летучие элементы, чем сера (например, Н2 в виде Н2O), обнаружившие значительно меньший дефицит, были бы потеряны в значительно большей степени. Кроме того, при охлаждении солнечного газа сера химически связывается с железом и перестает быть летучим элементом.

В связи с этим, вполне возможно, большие количества серы поступают в земное ядро. Следует отметить, что при прочих равных условиях температура плавления системы Fe-FeS значительно ниже, чем температура плавления железа пли силиката мантии. Так, при давлении 60 кбар температура плавления системы (эвтектики) Fe-FeS составит 990° С, в то время как чистого железа - 1610°, а пиролита мантии - 1310. Поэтому при повышении температуры в недрах первично однородной Земли железный расплав, обогащенный серой, будет формироваться первым и ввиду своей низкой вязкости и высокой плотности будет легко стекать в центральные части планеты, образуя железисто-сернистое ядро. Таким образом, присутствие серы в железоникелевой среде действует в качестве флюса, снижая температуру ее плавления в целом. Гипотеза о присутствии в земном ядре значительных количеств серы является весьма привлекательной и не противоречит всем известным данным геохимии и космохимии.

Таким образом, современные представления о природе недр нашей планеты соответствуют химически дифференцированному земному шару, который оказался разделенным на две разные части: мощную твердую силикатно-окисную мантию и жидкое в основном металлическое ядро. Земная кора представляет собой наиболее легкую верхнюю твердую оболочку, состоящую из алюмосиликатов и имеющую наиболее сложное строение.

Подводя итог сказанному, можно сделать следующие выводы.

  1. Земля имеет слоистое зонарное строение. Она состоит на две трети из твердой силикатно-окисной оболочки — мантии и на одну треть из металлического жидкого ядра.
  2. Основные свойства Земли свидетельствуют о том, что ядро находится в жидком состоянии и только железо из наиболее распространенных металлов с примесью некоторых легких элементов (скорее всего, серы) способно обеспечить эти свойства.
  3. В верхних своих горизонтах Земля имеет асимметричное строение, охватывающее кору и верхнюю мантию. Океаническое полушарие в пределах верхней мантии менее дифференцировано, чем противоположное континентальное полушарие.

Задача любой космогонической теории происхождения Земли - объяснить эти основные особенности ее внутренней природы и состава.

У учёных нет сомнений в том, что наша планета состоит минимум из трёх структур: наружная оболочка – кора, внутренняя сердцевина – ядро, а между ними как раз и лежит слой земных пород – мантия.


Она заметно толще коры и занимает более 80% всего объёма земного шара. Начинается мантия на глубине примерно 30–50 км (под океанами) и гораздо ниже – под континентами. На глубине около 30 000 км она граничит с ядром.

Как изучают строение Земли на таких огромных глубинах?

Конечно, недра – это не бездны океана или космоса. Внутрь планеты не послать ни экспедиции, ни роботов. Однако разработаны методы, которые позволяют туда «заглянуть». Для этого есть несколько путей.

1. Геофизические исследования. Например, регистрировать распространение волн от землетрясений. Пока эти волны доберутся, например, от Японии до Германии, они не раз изменят своё направление и скорость. По тому, в каких слоях они идут медленней, в каких – быстрее, можно судить о строении этих слоёв, их составе.

2. Геологические коллекции. Специалисты часто умеют различать «камешки» по месту их рождения. Так, недавно удалось по примесям расшифровать биографию шести алмазов. Когда-то крошечные кусочки углерода опустились из коры в мантию и «утонули» в ней. Чудовищное давление превратило их в , а восходящий поток понёс их в кору. Они оказались в вулканической породе, которую через 200 млн. лет люди подняли из бразильской шахты.

3. Эксперименты. Примерно представляя себе условия в недрах Земли, можно воспроизвести их в лабораториях и посмотреть на результаты.

4. Бурение сверхглубоких скважин. Правда, пока что самая глубокая из них, на Кольском полуострове достигла лишь отметки 12 262 метра. Возможно, добраться до мантии получится бурением океанского дна – здесь-то кора намного тоньше. Такое может оказаться под силу буровым суднам, уже созданным специально для подобных работ.

Из чего состоит мантия? Какие процессы в ней идут?

О мантии можно судить по её обломкам, которые вынесены на поверхность суши или долин океанского дна миллиарды лет назад. Предполагают, что мантия зеленовато-чёрная и состоит из горных пород, содержащих кремний, магний, кальций, железо, кислород. По составу она похожа на . Когда-то, до образования коры, такой была вся поверхность Земли.

Ныне распад радиоактивных веществ подогревает ядро, и оно передаёт свой жар мантии. Температура самого нижнего её слоя измеряется тысячами градусов. Поэтому его горные породы размягчены, колоссальное давление делает их текучими. Снаружи температура мантии постепенно падает. Охлаждённые внешние массы опускаются, подогретые внутренние – всплывают. Из-за высокой вязкости скорость движения невелика – до нескольких десятков сантиметров в год. Но этот круговорот никогда не прекращается. Время от времени потоки мантийного вещества внедряются в кору, этим перемещениям помогают вулканы.

Почему важно исследовать мантию Земли?

Мантия находится от нас далеко (точнее, глубоко), но, безусловно, влияет на жизнь людей и всей окружающей нас природы. Движения в мантии заставляют перемещаться стоящие на ней огромные плиты коры, которые несут континенты. Результат известен – землетрясения, извержения вулканов и массовые вымирания организмов, рождение и гибель островов, движение материков. Поняв процессы в мантии, мы получим шанс предвидеть глобальные катастрофы.

Тепловые перемещения в мантии влияют на появление зон подземного тепла. Представляя себе её «поведение», будет легче находить такие зоны для постройки геотермальных электростанций, горячие подземные воды, металлические руды. Да и другие полезные ископаемые тоже.


Скажем, считалось, что горючий газ метан образуется из гниющей органики благодаря бактериям. Но не так давно группа физиков доказала, что бывает иначе. Учёные смешали воду, оксид железа и минерал кальцит. Смесь разогрели до 1000°С под давлением 110 тысяч атмосфер и получили метан! Эти означало, что он может появляться и в глубинах мантии. Не исключено, что оттуда он поднимается в толщу коры. Так что тут нужно искать его скопления и добывать.