Презентация функции и их свойства. Свойства и графики элементарных функций - презентация

F (х2)\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-13_300.jpg"},{"number":14,"text":"На рисунке изображен график функции y = f(x), заданной на\nпромежутке (-5;6). Укажите промежутки, где\nфункция возрастает.\nПодума\n1\n2\n3\n\nй!\n\n[-6;7]\nПодума\nй!\n[-5;-3] U\n\nПодума\nй!\n[-3;7]\nВерно!\n\nу\n7\n\n3\n-5\n\n-3\n\n0\n-2\n\n4\n\n[-3;2]\n-6\n\nПроверка (1)\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-14_300.jpg"},{"number":15,"text":"На рисунке изображен график функции y = f(x).\nУкажите количес\nнулей функции.\ny\n\nПодума\nй!\n1\n\n1\n\n2\n\n2\n\n3\n\n4\n\n4\n\n0\n\nПодума\nй!\nВерно!\n\nх\n\nПодума\nй!\n\nПроверка (1)\nКоломина Н.Н.\n\n0\n\nНуль функции – значение х, при котором y = 0. На\nрисунке – это точки пересечения графика с осью Ох..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-15_300.jpg"},{"number":16,"text":"Какие из функций являются\nвозрастающими, а какие убывающими?\n\n1) y 5\n\nx\n\nвозрастающая, т.к.5  1\n\n2) y 0,5\n\n3) y 10\n\nx\n\nx\n\nубывающая, т.к.0  0,5  1\n\nвозрастающая, т.к.10  1\n\nая, т.к.  1\n4) y  x возрастающ\nx\n\n 2\n5) y  \n 3\n\n6) y 49\nКоломина Н.Н.\n\nx\n\n2\nубывающая, т.к.0   1\n3\n1\n1\nубывающая, т.к..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-16_300.jpg"},{"number":17,"text":"Исследование функции на монотонность.\nКак возрастающие, так и убывающие функции\nназываются монотонными, а промежутки, в\nкоторых функция возрастает или убывает, промежутками монотонности.\n\/\\\n\nНапример, функция у= Х2 при х 0 монотонно\nвозрастает.\nФункция у= Х3 на всей числовой оси монотонно\nвозрастает, а\nфункция у= -Х3 на всей числовой оси монотонно\nубывает.\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-17_300.jpg"},{"number":18,"text":"Исследовать функцию на монотонность\nх\nу\n\nФункция у=х2\n\n-2 -1 0\n4 1 0\n\n1\n1\n\n2\n4\n\ny\n6\n5\n4\n3\n2\n1\n\n-6\n4\n\n-5\n5\n\n-4\n6\n\n-3\n\n-2 - -1\n1\n2\n3\n4\n5\n6\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-18_300.jpg"},{"number":19,"text":"Обратная функция\nЕсли функция y  f (х) принимает каждое свое\nзначение только при единственном значении х, то\nтакую функцию называют обратимой.\nНапример, функция у=3х+5 является обратимой, т.к.\nкаждое значение у принимается при единственном\nзначении аргумента х. Напротив, функция у= 3Х2 не\nявляется обратимой, поскольку, например, значение\nу=3 она принимает и при х=1, и при х=-1.\nДля всякой непрерывной функции (такой, которая не\nимеет точек разрыва) существует монотонная\nоднозначная и непрерывная обратная функция.\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-19_300.jpg"},{"number":20,"text":"Диктант\n№\n\n№\n\nВариант-1\n\nВариант-2\n\nНайти область определения функции\n1\n\nу  х2  1\n\n1\n\nу\n\nНайти область значений\n2\n\nу\n\n3\n\nх 1\nх2  2\n\nх 1\n2\n2\nу\nх 2\nУказать способ задания функции\n\nх\n\n-2\n\n-1\n\n0\n\n1\n\nу\n\n3\n\n5\n\n7\n\n9\n\n3\n\nх2  1\n\n x  3, x   3;\nh x   2\n x  3, x  3.\n\nИсследовать функцию на четность\n4\n\n4\nИсследовать промежутки возрастания и убывания функции.\n\n5\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-20_300.jpg"},{"number":21,"text":"Функции.\n1. Линейная функция\n2.Квадратичная функция\n3.Степенная функция\n4.Показательная функция\n5.Догарифмическая функция\n6. Тригонометрическая\nфункция\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-21_300.jpg"},{"number":22,"text":"Линейная функция\n\ny = kx + b\ny\nb – свободный\nкоэффициент\nk – угловой\nкоэффициент\n\nk = tg α\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-22_300.jpg"},{"number":23,"text":"Квадратичная функция\n\ny = ax2 + bx + c, а ≠ 0\ny\n\n2\n\n b  b  4ac\nx1,2 \n2a\nb\nxв  \n2а\n4ac  b2\nyв \n4a\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-23_300.jpg"},{"number":24,"text":"Степенная функция\n\ny = xn\n\ny\n\ny = xnn, где n = 2k, k  Z\n\ny = xnn, где n = 2k +1, k  Z\n\n1\n01\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-24_300.jpg"},{"number":25,"text":"Показательная функция\nx\ny = a , а > 0, a ≠ 1\ny\n\ny=a\n01\n\nx\n\n1\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-25_300.jpg"},{"number":26,"text":"Логарифмическая функция\ny\n\ny = loga x , а >.jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-26_300.jpg"},{"number":27,"text":"Самостоятельная работа\nПостроить графики функций и найти:\n1. D(y)-область определения;\n2.E(y)-множество её значений;\n3.Проверить на чётность (нечётность);\n4.Найти промежутки монотонности и\nВариант-1\nВариант-2\nпромежутки\nзнакопостоянства;\n1.\n5.Определить точки1.пересечения с осями\n2.\n\n2.\n\n3.\n\n3.\n\n4.\n\n4.\n\n5.\n\n5.\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-27_300.jpg"},{"number":28,"text":"Вопросы для повторения\n1.Сформулируйте определение функции.\n2.Что называется областью определения функции?\n3. Что называется областью изменения\nфункции?\n4.Какими способами может быть\nзадана функция?\n5.Как находится\nобласть определения функции?\n6.Какие функции называются четными и как они исследуются на\nчетность?\n7.Какие функции\nназываются нечетными и как они исследуются на нечетность?\n8.Приведите примеры\nфункций, которые не являются ни четными, ни нечетными.\n9.Какие функции называются\nвозрастающими? Приведите примеры.\n10.Какие функции называются убывающими?\nПриведите примеры.\n11.Какие функции называются обратными?\n12.Как расположены графики прямой и\nобратной функций?\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-28_300.jpg"},{"number":29,"text":"Источники\nСсылки на изображения:\nГрафик:http:\/\/goldenbakes.com\/wordpress\/wpcontent\/uploads\/2013\/07\/\nSectors_Investment_Funds.jpg\nЛисток в клетку: http:\/\/demeneva.ru\/rmk\/fon\/59.png\nАвтор шаблона: Наталья Николаевна Коломина учитель математики\nМКОУ «Хотьковская СОШ» Думиничского района Калужской области.\nПрезентации:\nhttp:\/\/festival.1september.ru\/articles\/644838\/presentation\/pril.pptx Мухина Галина\nГеннадьевна\nhttp:\/\/prezentacii.com\/matematike\/223-sих графики voystva-funkciy-i-ih-grafiki.html\nhttp:\/\/semenova-klass.moy.su\/_ld\/1\/122____.ppt Елена Юрьевна Семенова\nБогомолов Н.В. Математика: учеб. для ссузов \/ Н.В.Богомолов,\nП.И.Самойленко.-3-е изд., стереотип.- М.: Дрофа, 2005.-395с.\n\nКоломина Н.Н..jpg","smallImageUrl":"\/\/pedsovet.su\/_load-files\/load\/48\/64\/3\/f\/2-page-29_300.jpg"}]">

Слайд 1

Тема 1.4 Функции, их свойства и графики

Слайд 2

Цели урока: Ознакомиться с понятием «функция», закрепить его на примерах Усвоить новые термины Узнать методы исследования функции Закрепить знания по теме при решении задач Научиться строить графики функций Коломина Н.Н.

Слайд 3

Немного истории Слово "функция" (от латинского functio - совершение, выполнение) впервые употребил в 1673 г. немецкий математик Лейбниц. В главном математическом труде "Геометрия" (1637) Рене Декарта впервые введено понятие переменной величины, создан метод координат, введены значки для переменных величин (x, y, z, ...) Коломина Н.Н. Определения функции «Функция переменного количества есть аналитическое выражение, cоставленное каким-либо образом из этого количества и чисел или постоянных количеств» сделал в 1748 г. немецкий и российский математик Леонард Эйлер

Слайд 4

Определение. «Зависимость переменной y от переменной x, при которой каждому значению переменной х соответствует единственное значение переменной у, называют функцией». у 6 5 4 3 2 1 х -6 -5 6 Символически функциональная зависимость между переменной у (функцией) и переменной х (аргументом) записывается с помощью равенства y  f (x) -4 -3 -2 -1 -1 -2 -3 -4 -5 -6 Способы задания функций: табличный (таблица), графический(график), аналитический (формула). Коломина Н.Н. 0 1 2 3 4 5

Слайд 5

Общая схема исследования функции 1. Область определения функции. 2.Исследование области значений функции. 3. Исследование функции на четность. 4.Исследование промежутков возрастания и убывания функции. 5. Исследование функции на монотонность. 5. Исследование функции на экстремум. 6. Исследование функции на периодичность. 7. Определение промежутков знакопостоянства. 8.Определение точек пересечения графика функции с осями координат. 9. Построение графика функции. Коломина Н.Н.

Слайд 6

Область определения функции Областью определения (существования) функции называется множество всех действительных значений аргумента, при которых она может иметь действительное значение. Например, для функции у=х областью определения является множество всех действительных значений чисел R ; для функции у=1/х областью определения является множество R кроме х=0. Коломина Н.Н.

Слайд 7

Найдите область определения функции, график которой изображен на рисунке. 1 2 3 4 Подума [-5;7) й! [-5;7]Подума й! (-3;5] Проверка (1) Коломина Н.Н. у Подума й! Верно! [-3;5] 5 -5 0 7 х -3 Область определения функции – значения, которые принимает независимая переменная х.

Слайд 8

Множество значений функции. Множеством значений функции называется множество всех действительных значений функции у, которые она может принимать. Например, множеством значений функции у= х+1 является множество 2 R, у= Х +1 множеством значений функции является множество действительных чисел, больше или равных 1. Коломина Н.Н.

Слайд 9

Найдите множество значений функции, график которой изображен на рисунке. 1 2 Подума й! [-6;6] у 6 Подума й! [-4;6] Верно! -4 3 (-6;6) 4 Подума й! (-4;6) 0 6 х -6 Проверка (1) Коломина Н.Н. Множество значений функции – значения, которые принимает зависимая переменная у.

Слайд 10

Исследование функции на четность. Функция y  f (х) называется четной, если при всех значений х в области определения этой функции при изменения знака аргумента на противоположный значение функции не изменяется, т.е. . f ( х) парабола  f (х) у= Х2 является четной Например, функцией, т.к. (-Х2)= Х2 . График четной функции симметричен относительно оси Коломина Н.Н. оу.

Слайд 11

На одном из следующих рисунков изображен график четной функции. у у Укажите этот график. Подума й! Подума й! 1 0 х у 0 у х 2 Верно! Подума й! 3 Проверка (1) Коломина Н.Н. 4 0 х 0 График симметричен относительно оси Oу х

Слайд 12

Функция y  f (х) называется нечетной, если при всех значениях х в области определения этой функции при изменении знака аргумента на противоположный функция изменяется только по знаку, т.е. f ( х)  f (х) . Например, функция у= Х3 – нечетная, т.к. (-Х)3 = -Х3. График нечетной функции симметричен относительно начала координат. Свойством четности или нечетности обладает не всякая функция. Например, функция f (х)  Х2+ Х3 не является ни четной, ни нечетной: f ( х)  (-Х)2+ (-Х)3 = Х2 – Х3; Коломина Н.Н. Х2 + Х3= / Х2 – Х3 ;

Слайд 13

На одном из следующих рисунков изображен график нечетной функции. Укажите у этот график. у Верно! Подума й! О 1 х у О Подума й! О Проверка (1) Коломина Н.Н. 3 у Подума й! 2 х х О х 4 График симметричен относительно точки О.

Слайд 14

Определение промежутков возрастания и убывания 1 /\ /\ /\ /\ Среди множества функций есть функции, значения которых с увеличением аргумента только возрастают или только убывают. Такие функции называются возрастающими или убывающими. Функция называется возрастающей в промежутке а х в, если для любых Х1 и Х2 , принадлежащих этому промежутку, при Х1 Х2 имеет место неравенство 2 /\ /\ /\ Функция y  f (х) называется убывающей в промежутке а х в, если для любых Х1 и Х2, принадлежащих этому промежутку, при Х1 Х2 имеет место неравенство f (х1) > f (х2) Коломина Н.Н.

Слайд 15

На рисунке изображен график функции y = f(x), заданной на промежутке (-5;6). Укажите промежутки, где функция возрастает. Подума 1 2 3 й! [-6;7] Подума й! [-5;-3] U Подума й! [-3;7] Верно! у 7 3 -5 -3 0 -2 4 [-3;2] -6 Проверка (1) Коломина Н.Н. 2 6 х

Слайд 16

На рисунке изображен график функции y = f(x). Укажите количес нулей функции. y Подума й! 1 1 2 2 3 4 4 0 Подума й! Верно! х Подума й! Проверка (1) Коломина Н.Н. 0 Нуль функции – значение х, при котором y = 0. На рисунке – это точки пересечения графика с осью Ох.

Слайд 17

Какие из функций являются возрастающими, а какие убывающими? 1) y 5 x возрастающая, т.к.5  1 2) y 0,5 3) y 10 x x убывающая, т.к.0  0,5  1 возрастающая, т.к.10  1 ая, т.к.  1 4) y  x возрастающ x  2 5) y    3 6) y 49 Коломина Н.Н. x 2 убывающая, т.к.0   1 3 1 1 убывающая, т.к.49  и 0  1 49 49 1

Слайд 18

Исследование функции на монотонность. Как возрастающие, так и убывающие функции называются монотонными, а промежутки, в которых функция возрастает или убывает, промежутками монотонности. /\ Например, функция у= Х2 при х 0 монотонно возрастает. Функция у= Х3 на всей числовой оси монотонно возрастает, а функция у= -Х3 на всей числовой оси монотонно убывает. Коломина Н.Н.

Слайд 19

Исследовать функцию на монотонность х у Функция у=х2 -2 -1 0 4 1 0 1 1 2 4 y 6 5 4 3 2 1 -6 4 -5 5 -4 6 -3 -2 - -1 1 2 3 4 5 6 Коломина Н.Н. 0 1 2 3 Функция у=х2 х при х0 монотонно возрастает

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

«Функции и графики» Презентация к уроку ГБОУ НПО Профессиональный лицей №80 Преподаватель математики Савицкая Галина Ивановна

«Функции и графики» 1. Что такое функция? Определение 2. Графики элементарных функций 3. Свойства функции 5. Преобразование графиков функций Упражнения: Указать свойства функции 4. Как построить график по заданным свойствам функции

Пусть есть множества X и Y . Если каждому элементу х из множества Х по некоторому правилу сопоставлен единственный элемент y из множества Y , то говорят, что задана функция у = f(x) ОПРЕДЕЛЕНИЕ Х У Y X 1 y 1 X 2 y 2 X 3 y 3 X 4 y 4 X f (закон)

Говорят, что у есть функция от х y=f(x) При этом: Х = – область определения функции ООФ или D(y) у – множество значений функции МЗФ или E(y) Х – независимая переменная или аргумент Y – зависимая переменная или функция

1) Формулой х 1 2 3 4 5 у 1 8 15 20 22 Способы задания функции у = х 2 + 2х – 4 у = 3х f(x) = log 2 (3x+4) f(x) = COS 2x 2) Таблицей

У= f (х) У Х 0 ось ординат ось абсцисс начало координат Способы задания функции 3) Графиком 1 2 3 -1 -2 -3 -1 -2 -3 1 2 3

У= f (х) У Х 0 1 2 3 -1 -2 -3 -1 -2 -3 1 2 3 А(-2;1) В(1;-2) М(х; У) Графиком функции У= f (х) называется множество точек координатной плоскости имеющих координаты (х; f (х)) или (х; У)

1. Линейная функция Графики элементарных функций у х У = х у = 2х у = - х y = к х + в к – угловой коэффициент 0 y = х к=1 y = 2 х к=2 y = - х к=-1 y = ½ х к = ½ 1 1 2 -1 y = ½ х

1. Линейная функция: Графики элементарных функций у х y = к х + в к – угловой коэффициент 0 y = х +2 y = х -2 1 1 2 -1 у = х-2 у = х+2 y = х -2

1. Линейная функция: Графики элементарных функций у х y = к х + в к – угловой коэффициент 0 y = х y = 2 х = 3 1 1 1 2 -1 -2 3 2 3 y = 2 Х = 3

2. Квадратичная функция у=ах 2 + b х + с Графики элементарных функций 0 у х х 0 у 0 парабола Координаты вершины параболы: х 0 = - b 2а у 0 = а (х 0) 2 + b х 0 + с если а > 0 Ветви параболы направлены вверх если а 0 а

Кубическая функция: у=ах 3 + b х 2 + сх + d Графики элементарных функций кубическая парабола у х 0 у=х 3 1 1 -1 -1 у=х 3

4. Обратно пропорциональная функция: У= Графики элементарных функций гипербола к х у х 0 1 -1 1 -1 у х 0 1 -1 1 -1 у = 1 х у = - 1 х

5. Модульная функция: у = | х | Графики элементарных функций у х 0 1 1 -1

СВОЙСТВА ФУНКЦИЙ Y = f (x) У х 0 а 1 а 2 а 3 а 4 а 5 а 6 а 7 а 8 а 9 в 1 в 2 в 3 в 4

СВОЙСТВА ФУНКЦИЙ у= f (х) У х 0 а 1 а 9 1 . Область определения функции – это множество значений аргумента Х при которых существует функция ООФ: Х є [ а 1 ; а 9 ]

СВОЙСТВА ФУНКЦИЙ У = f (х) У х 0 в 1 в 4 2 . Множество значений функции – это множество всех чисел, которые может принимать у МЗФ: у є [ в 4 ; в 1 ]

СВОЙСТВА ФУНКЦИЙ У = f (х) У х 0 а 2 а 4 а 6 а 8 3. Корни (или нули) функции – это такие значения х, при которых функция равна нулю (у=0) f (x) = 0 при Х = а 2 ; а 4 ; а 6 ; а 8

СВОЙСТВА ФУНКЦИЙ у= f (х) У х 0 а 1 а 2 а 4 а 6 а 8 а 9 4 . Участки знакопостоянства функции – это такие значений х при которых функция больше или меньше нуля (т.е. у > 0 или у 0 при Х є (а 1 ; а 2); (а 4 ; а 6); (а 8 ; а 9)

СВОЙСТВА ФУНКЦИЙ у= f (х) У х 0 а 2 а 4 а 6 а 8 4 . Участки знакопостоянства функции – это такие значений х при которых функция больше или меньше нуля (т.е. у > 0 или у

СВОЙСТВА ФУНКЦИЙ у= f (х) У х 0 а 3 а 5 а 7 а 9 5 . Монотонность функции – это участки возрастания и убывания функции Функция возрастает при Х є [ а 3 ; а 5 ] ; [ а 7 ; а 9 ] а 1 Функция убывает при Х є [ а 1 ; а 3 ] ; [ а 5 ; а 7 ]

СВОЙСТВА ФУНКЦИЙ у= f (х) У х 0 а 3 а 5 а 7 в 2 в 3 в 4 Экстремумы функции F max (x) F min (x) F min (x) F max (х) = в 2 в точке экстремума х = а 5 F min (х) = в 3 в точке экстремума х = а 3 F min (x) = в 4 в точке экстремума х = а 7

СВОЙСТВА ФУНКЦИЙ у= f (х) у х 0 а 7 а 9 в 1 в 4 7. Наибольшее и наименьшее значения функции (это самая высокая и самая низкая точки на графике функции) наибольшее значение F (х) = в 1 в точке х = а 9 наименьшее значение F (x) = в 4 в точке х = а 7

у х F(x) = x 2 у х F(x) = cos x х 0 0 Х -Х СВОЙСТВА ФУНКЦИЙ Четные и нечетные функции Функция называется четной, если для любого Х из ее области определения выполняется правило f(x) = f(- x) График четной функции симметричен относительно оси У f(x) Х -Х f(x)

СВОЙСТВА ФУНКЦИЙ Четные и нечетные функции Функция называется нечетной, если для любого Х из ее области определения выполняется правило f(x) = - f(x) График нечетной функции симметричен относительно начала координат у х 0 у=х 3 х f(x) - f(x) - х у х 0 у = 1 х 1 -1 1 -1

2 2 4 6 8 10 х -2 -4 -6 -8 -10 0 4 6 у -2 -4 у= f (х) Т = 4 Периодичность функций Если рисунок графика функции повторяется, то такая функция называется периодической, а длина отрезка по оси Х называется периодом функции (T) Периодическая функция подчиняется правилу f(x) = f(x+T) СВОЙСТВА ФУНКЦИЙ

2 2 4 6 х -2 -4 -6 0 4 6 у -2 -4 -6 у= f (х) Т = 6 СВОЙСТВА ФУНКЦИЙ Функция y=f(x) - периодическая с периодом Т = 6

1 1 2 3 4 5 х -1 -2 -3 -4 -5 0 2 3 4 у -1 -2 -3 -4 Указать свойства функции 1) ООФ 2) МЗФ 3) Нули функции 4) Функция положительная Функция отрицательная 5) Функция возрастает Функция убывает 6) Экстремумы функции F max (х) F min (х) 7) Наибольшее значение функции Наименьшее значение функции у= f (х)

1 1 2 3 4 5 х -1 -2 -3 -4 -5 0 2 3 4 у -1 -2 -3 -4 Указать свойства функции у= f (х)

2 2 4 6 8 10 х -2 -4 -6 -8 -10 0 4 6 8 у -2 -4 -6 -8 Указать свойства функции у= f (х)

2 2 х -2 0 у -2 Указать свойства функции у= f (х)

3 3 х -1 0 у -1 -4 -5 Построить график функции Дано: а) Область определения – есть промежуток [-4;3] б) Значения функции составляют промежуток [- 5 ;3] в) Функция убывает на промежутках [-4; 1 ] и [ 2 ;3] возрастает на промежутке [- 1 ; 2 ] г) Нули функции: -2 и 2

ПРЕОБРАЗОВАНИЕ ГРАФИКОВ ФУНКЦИЙ Зная график элементарной функции, например f(x) = x 2 можно построить график «сложной» функции, например f(x) = 3(x +2) 2 - 16 с помощью правил преобразования графиков

Правила преобразования графиков 1 правило: Смещение вдоль оси Х Если к аргументу Х прибавить или отнять число, то график сместится влево или вправо по оси Х f(x) f(x ± a) преобразовать в 0 у х 0 у х 4 -4 F(x) = x 2 F(x) = (x+4) 2 F(x) = (x-4) 2

Если к функции Y прибавить или отнять число, то график сместится вверх или вниз по оси Y f(x) f(x) =Х ± a преобразовать в Правила преобразования графиков 2 правило: смещение вдоль оси У у х 4 - 4 0 у х F(x) = x 2 F(x) = x 2 + 4 F(x) = x 2 - 4

Если аргумент Х умножить или разделить на число К, то график сожмется или растянется в К раз по оси Х f(x) f(к· x) преобразовать в Правила преобразования графиков 3 правило: сжатие (растяжение) графика вдоль оси Х у х F(x) = sin x F(x) = sin 2x

Если к функции Y прибавить или отнять число, то график сместится вверх или вниз по оси Y f(x) f(x) ± a преобразовать в у х F(x) = sin x F(x) = sin х 2 Правила преобразования графиков 3 правило: C жатие (растяжение) графика вдоль оси Х

Если функцию умножить или разделить на число К, то график растянется или сожмется в К раз по оси У f(x) к · f(x) преобразовать в Правила преобразования графиков 4 правило: сжатие (растяжение) графика вдоль оси У у х F(x) = cos x F(x) = cos x 1 2

Если функцию умножить или разделить на число К, то график растянется или сожмется в К раз по оси У f(x) к · f(x) преобразовать в Правила преобразования графиков 4 правило: сжатие (растяжение) графика вдоль оси У у х F(x) = cos x F(x) = 2cos x

Если перед функцией изменить знак на противоположный, то график симметрично перевернется относительно оси Х f(x) - f(x) преобразовать в Правила преобразования графиков 5 правило: переворот графика относительно оси Х у х F(x) = x 2 F(x) = - x 2


В презентации представлены основные элементарные функции

Просмотр содержимого документа
«Презентация по теме "Элементарные функции и их графики"»


у х, х у.


Виды функций и построение графических образов:

1. Виды функций

  • Степенная
  • Показательная
  • Логарифмическая
  • Тригонометрическая

2. Построение графических образов

3. Тест


Виды функций

n – любое число

  • Линейная
  • Квадратичная
  • Кубическая
  • Гипербола
  • Y=X 1/2 и Y=-X 1/2
  • Y=X 1/3 и Y=-X 1/3

Степенная функция

Y=kX+b , где k и b любые числа


Y=ax 2 +bx+c , где a , b и с – любые числа, a ≠0

график квадратичной функции - парабола


Свойства функции Y=X 2 и Y= - X 2

  • ООФ: (- ∞:∞)
  • ОЗФ: [ 0;∞)
  • Функция возрастает на промежутке
  • Нули функции: Y=0 при х=0
  • Y наим =0 при х=0

1. ООФ: (- ∞:∞)

2. ОЗФ: (-∞;0 ]

3. Функция возрастает на промежутке (- ∞;0 ] ; функция убывает на промежутке , y = {x}, y = sgn x.

6 слайд

Функции у = [x], y = {x}, y= sgn x. Графики каких функций изображены на рисунках? Назовите свойства каждой из них. у х -2 –1 0 1 2 1 а 0 -1 1 х у б -2 –1 0 1 2 х у 1 в

7 слайд

Выводы. Итак, в результате работы над проектом мы изучили свойства и построили графики следующих функций: линейной; прямой и обратной пропорциональности; дробно-линейной; квадратичной; y = |x|; y = [x], y = {x}, y = sgn x.

8 слайд

Самостоятельная работа. Самостоятельная работа состоит из двух частей: компьютерный тест; письменная работа по карточкам.

9 слайд

Функцией называется зависимость одной переменной от другой, при которой каждому значению независимой переменной ставится в соответствие единственное значение зависимой переменной.

10 слайд

Существуют различные способы задания функции: аналитический; табличный; графический; кусочное задание.

11 слайд

Аналитический способ задания функции. Задание функции с помощью формулы (аналитического выражения) называют аналитическим способом задания функции. y= x2 + 2x y= - 2 x + 8

12 слайд

Табличный способ задания функции. Функцию можно задать таблицей, где перечисляются все значения аргумента и функции. Такой способ задания функции называется табличным. х -5 -3 0 2 4 у 6 10 18 24 35

13 слайд

Графический способ задания функции. Задание функции с помощью графика называется графическим способом. Графиком функции у = f (х) называется множество точек (х, у), координаты которых удовлетворяют данному уравнению.

«Построить график функции» - Графики и функций y=m sinx+n и y=m cosx+n. Растяжение графика y=cosx по оси y. Чтобы вернуться К содержанию нажмите сюда. График функции y= m*cos x. Смещения графика y=cosx по вертикали. Содержание: Самостоятельная работа. Дана функция y=cosx+1. Смещение графика y=sinx по горизонтали. Дана функция y=sinx+1.

«Наибольшее и наименьшее значение функции» - Задача1 Задача 2,3. Задачи урока: Решение: Наименьшего не существует. Установим связь между условием и заключением. Ответ: Наибольшее 0, наименьшее значение -8/3. Константинова Татьяна Геннадьевна МОУ «Западнодвинская СОШ №1». Тема: Производная степенной функции. Найти наименьшее и наибольшее значение заданной функции на заданном промежутке:

«Координатная плоскость» - Координатная плоскость. Координатная прямая, координатный угол. Задача №1. План урока. Координаты точек, расположенных на осях. Как отмечаются числа на координатной прямой. (1 способ). Познакомить учащихся с историей возникновения отрицательных чисел. Как отмечаются точки на плоскости. (2 способ). Цели урока:

«Свойства функции» - 1.Определение функции. y=0, x=0 6.Промежутки знакопостоянства y > 0 на (0; +). 5.Ноль функции. Свойства функции. E(y)=}