Нанороботы внутри нас: как работают клетки. Нанороботы внедряются в организм человека Название конструктора в котором главные герои нанороботы

Нанороботы - роботы, созданные из наноматериалов, размеры которые можно сопоставить с размерами молекулы. Данные устройства должны обладать функциями движения, обработки и передачи информации, исполнения программ. Их размеры не превышают нескольких нанометров. Ссылаясь на современную теорию, нанороботы должны уметь осуществлять двустороннюю коммуникацию: реагировать на акустические сигналы и быть в состоянии подзаряжаться или перепрограммироваться извне, благодаря электрическим и звуковым колебаниям. Также важной особенностью являются функции репликации - самосборки новых нанитов и программированного самоуничтожения, когда среда работы, более не нуждается в присутствии в нем нанороботов. В последнем случае роботы должны распадаться на безвредные и быстровыводимые компоненты.

Создано уже достаточно нанотехнологических устройств несмотря на то, что они являются экспериментальными установками, на практике их перспективы очевидны. Разработан наноэлектродвигатель, имеющий обмотку из одной длиной молекулы, способной без потерь передавать ток. При подаче напряжения ротор (состоящий из нескольких молекул) начинал вращаться. Существует также устройство линейной транспортировки, способное перемещать молекулы на заданное расстояние. Разрабатываются также молекулярные биосенсоры, антенны, манипуляторы.

Логично задать вопрос - когда же нанороботы придут в наш мир, станут для нас обыденностью, как компьютеры и интернет.

По прогнозам ученых, век нанороботов уже не за горами

Ученые уверены, что все перспективы могут осуществиться, наномашины будут в состоянии воссоздавать любые предметы из атомов, смогут омолаживать человека, станут искусственными производителями пищи, заполнят околоземное пространство и сделают пригодными для человека планеты и их луны.

Существуют, однако, и опасения по поводу наномеханики. Так книга «Машины Созидания» повествует о сбое в программе роботов, в силу чего они превращают всю землю в месиво из самих себя.

Данные взгляды не являются прерогативой фантастов, их поддерживает ряд ученых, которых в прессе иногда называют наноапокалиптиками. Профессор Евгений Абрамян в своей статье «Угрозы новых технологий» описывает ситуацию, при которой роботы, предназначенные для разборки на атомы отходов, начнут разбирать в силу сбоя и все остальное. При этом такие машины будут самореплицироваться. Кроме того, как отмечает ученый, эти микромашины могут стать основой для новых, еще более чудовищных, чем современные, средств ведения войны.

Так или иначе, шаг к созданию нанороботов уже сделан и мы в очередной раз сталкиваемся с вопросом постановки формулировки: меняют ли наши нововведения нашу же жизнь, или мы сами её меняем. Сможем ли мы создать на основе наномеханики мир, свободный от голода, нужды и при этом имеющий потенциал к развитию, или дорога из желтого нанокирпича приведет нас к хаосу новых войн будет зависеть от нас самих, но ясно одно: мир меняется и мы стремительно меняемся вместе с ним.

Нанороботы в медицине

Нанороботы , за разработку которых дали Нобелевскую премию по химии 2016 года, в ближайшем будущем, без сомнения, совершат переворот в медицине . Совсем недавно я рассказывал о , и как результаты в ней изложенные могут помочь продлить жизнь и сохранить здоровье уже сейчас, а сегодня мой рассказ о еще более грандиозном открытии, которое возможно, откроет путь к избавлению от болезней даже неизлечимых сегодня - например, рака даже избавит от старения, как бы фантастично это не звучало.

Нобелевскую премию по химии за 2016 год получили 3 человека, Фрейзер Стоддарт из США, Жан-Пьер Соваж из Франции, и Бернард Феринг из Голландии, они разработали молекулярны машины (их размеры в 10 тыс. раз меньше размера человеческого волоса), которые могут выполнять по команде человека определённые действия. Особо стоит отметить наномотор: его можно сравнить с изобретением электродвигателя в 1830 году. По мнению членов нобелевского комитета по важности эти изобретения равнозначны - открытие электродвигателя перевернуло жизнь человечества, и скоро стоит ждать этого и от наномашин.

Разработчики первых нанороботов

Какие же возможности открываются для применения разработанных нанороботов в медицине? Пока нанороботы используются и тестируются, только на лабораторных животных, но Рей Курцвейл предсказывает скорое их развитие до уровня применения в человеческом организме.

Нанороботы в медицине: для точной доставки лекарств

Точное дозирование, и доставка лекарств и биологически активных веществ станет простейшей задачей для медицины, сейчас вам приходится принимать препарат для лечения болезни который действует на множество органов и систем сразу, на одни он действует положительно , а другие в это время повреждает. Недавно было выяснено в исследованиях, как сильные антиоксиданты совместно со своим положительным действием на организм незаметно повреждают молекулы ДНК в организме, нанося им вред - все это происходит именно из-за неизбирательного действия препаратов.

Нанороботы в медицине: для Борьбы с раком, болезнями и вирусами

Нанороботы можно будет также применить для, уничтожения раковых клеток, как при помощи простого механического разрушения так, и используя точечную доставку лекарственных препаратов. Фактически любые подобные задачи возможно решить с помощью нанороботов — избавить от диабета,аллергии, даже уничтожить вирус СПИДа всё это не должно быть проблемой, при достаточном развитии технологии.

НАНОРОБОТЫ В МЕДИЦИНЕ: БЕССМЕРТИЕ возможно?

Могут ли нанороботы подарить нам бессмертие? Я могу ответить да — в будущем, возможно в достаточно отдаленном. Все механизмы старения не раскрыты до сих пор, а нанороботу необходимо будет дать команду для проведения изменений в организме, пока до конца не ясно, что менять говорить о полной победе над старением конечно рано, но отрадно, что работы в этом направлении признаны уже на таком высоком уровне как Нобелевская премия — скорая победа над болезнями и старением уже не за горами. Нанороботам можно поручить восстанавливать повреждения ДНК, которые накапливаются с возрастом, а также удалять клеточный мусор — что является одним из механизмов старения.

нанороботы в медицине: какие проблемы сейчас стоят перед учеными?

Основные проблемы которые мне видятся:

  • Проблема управления и точной доставки в нужное место - сейчас управляют нанороботами при помощи переменного магнитного поля, оно заставляет раскачиваться движущийся элемент - за счет чего и происходит движение. В идеале каждый наноробот должен быть управляем отдельно, при помощи команд — т , е иметь в своем составе подобие приемопередающего устройства, а также нанокомпьютер.
  • Проблема контроля положения в организме — нанороботы не могут никак сигнализировать о своём положении в организме, и о производимых изменениях. Предполагается использовать в будущем, для контроля за этим процессом приборы наподобие томографов.

Более подробно про разработки медицинских нанороботов, и наномедицину можно прочитать в википедии .

Небольшой, но очень интересный документальный фильм о наномедицине.

Конечно существуют и опасности связанные с использованием нанороботов, это так называемое их неконтролируемое самопроизводство, где в качестве топлива они начнут использовать, все что угодно — это гепотетическое явление получило название «серая слизь». Но я не хочу рассматривать негативные сценарии развития, все таки более оптимистичным хочется быть.

Эра нанороботов принадлежит к третьему мосту на пути к бессмертию, по теории Рея Курцвейла.

Первый мост : делать все, что возможно делать на сегодняшнем уровне медицины для продления жизни: физические упражнения, применение , диеты и , прием для того, что бы иметь возможность дожить до второго моста.

Второй мост : здесь в игру включаются новые технологии стоящие на передовом крае науки: генная терапия, стволовые клетки, замена изношенных органов клонированными органами тканями, цель дожить до возможностей третьего моста.

Третий мост : его основу составляют искусственный интеллект и нанотехнологии. Результатом применения технологий третьего моста должны стать специализированные нанороботы способные полностью перестраивать организм владельца.

Рей Курцвейл известнейший футуролог прогнозы которого обладают потрясающей точностью, и сбываемостью.

Вот цитата Била Гейтса про него:

Рэй Курцвейл является лучшим человеком, которого я знаю, в предсказании будущего искусственного интеллекта.

Похожих статей не найдено.

Встречаются наивные люди, утверждающие, что за миллиарды лет эволюции природа так и не изобрела колесо. Если бы они уменьшились до наноуровня и совершили путешествие внутрь живой клетки, то увидели бы не только колесо, но и электродвигатели, конвейеры, сборочные линии и даже шагающих роботов.

По подсчетам биологов, в живой клетке функционирует около сорока известных науке молекулярных машин. Они возят грузы по молекулярным «рельсам», выступают в качестве «включателей» и «выключателей» химических процессов. Машины из молекул производят энергию для поддержания жизни, сокращают наши мышцы и строят другие молекулярные машины. А еще они вдохновляют ученых на строительство рукотворных нанороботов, которые в будущем смогут жить и работать во внутриклеточном мире.

Чтобы представить себе, из чего и как ученые-гулливеры будут строить роботов-лилипутов, мы рассмотрели несколько наномашин, созданных самой природой.

Жгутик бактерии

Известный российский биохимик, академик РАН Владимир Скулачёв назвал движение бактерий одним из самых поразительных явлений природы: «Его исследование нанесло сокрушительный удар по нашему высокомерному снобизму вроде того, что биологическая эволюция, имея в своем распоряжении миллиарды лет, так и не смогла изобрести колесо».

Для передвижения в жидкой среде некоторые бактерии используют вращающийся жгутик, который приводится микроскопическим электродвигателем, собранным из нескольких белковых молекул. Раскручиваясь до 1000 об/мин, жгутик может толкать бактерию вперед с необыкновенно большой скоростью - 100–150 мкм/с. За секунду одноклеточное перемещается на расстояние, превосходящее его длину более чем в 50 раз. Если это перевести на привычные нам величины, то спортсмен-пловец ростом в 180 см должен был бы переплывать 50-метровый бассейн за полсекунды!

Метаболизм бактерии устроен таким образом, что положительные ионы водорода (протоны) накапливаются между внутренней и внешней мембранами ее клетки. Создается электрохимический потенциал, увлекающий протоны из межмембранного пространства в клетку. Этот поток протонов проходит через «двигатель», приводя его в движение.

Белковую структуру «мотора» называют комплексом Mot, который, в свою очередь, состоит из белков Mot A (статора) и Mot B (ротора). Ионные каналы в них расположены таким образом, что движение протонов заставляет ротор вращаться подобно турбине. Манипулируя структурой белка, некоторые бактерии умеют изменять направление и скорость движения, а иногда даже включать «задний ход».

Наличие вращающихся частей у живого организма поначалу казалось столь невероятным, что потребовало серьезных экспериментальных подтверждений. Таких подтверждений было получено несколько. Так, в лаборатории академика Скулачёва бактерию характерной формы (в виде полумесяца, где передняя часть бактерии была вогнутой, задняя - выпуклой) прикрепляли жгутиком к стеклу и наблюдали за ней в микроскоп. Было хорошо видно, как бактерия вращается, постоянно показывая наблюдателю лишь переднюю часть, свою «впалую грудь», и никогда не поворачиваясь «спиной».

АТФ-синтаза

Протонная АТФ-синтаза - самый маленький в живой природе биологический мотор шириной всего в 10 нм. С его помощью живые организмы вырабатывают аденозинтрифосфат (АТФ) - вещество, которое служит основным источником энергии в клетке.

АТФ состоит из аденозина (соединение хорошо знакомого нам по ДНК азотистого основания аденина и сахара рибозы) и трех последовательно подсоединенных к нему фосфатных групп. Химические связи между фосфатными группами очень сильные и содержат много энергии. Эта консервированная энергия может пригодиться для питания самых разнообразных биохимических реакций. Однако сперва необходимо определенным образом приложить энергию, чтобы упаковать аденозин и фосфатные группы в молекулу АТФ. Этим и занимается АТФ-синтаза.

Поступающие в организм жирные кислоты и глюкоза проходят многочисленные циклы, в процессе которых специальные ферменты дыхательной цепи откачивают положительные ионы водорода (протоны) в межмембранное пространство. Там протоны накапливаются, как войско перед битвой. Создается потенциал: электрический (положительные заряды снаружи митохондриальной мембраны, отрицательные внутри органеллы) и химический (возникает разница концентраций ионов водорода: внутри митохондрии их меньше, снаружи больше).

Известно, что электрический потенциал на мембране митохондрий, которая служит хорошим диэлектриком, достигает 200 мВ при толщине мембраны всего 10 нм.

Накопившись в межмембранном пространстве, протоны, подобно электрическому току, устремляются назад, в митохондрию. Они проходят по специальным каналам в АТФ-синтазе, которая встроена во внутреннюю сторону мембраны. Поток протонов раскручивает ротор, будто река водяную мельницу. Ротор вращается со скоростью 300 оборотов в секунду, что сопоставимо с максимальными оборотами двигателя болида «Формулы-1».

АТФ-синтазу по форме можно сравнить с грибом, «растущим» на внутренней стороне мембраны митохондрии, при этом описанный выше ротор прячется в «грибнице». «Ножка гриба» вращается вместе с ротором, и на ее конце (внутри «шляпки») закреплено некое подобие эксцентрика. Неподвижная «шляпка» условно делится на три дольки, каждая из которых деформируется, сжимается при прохождении эксцентрика.

К «долькам» прикрепляются молекулы аденозиндифосфата (АДФ, с двумя фосфатными группами) и остатки фосфорной кислоты. В момент сжатия АДФ и фосфат прижимаются друг к другу достаточно сильно, чтобы образовать химическую связь. За один оборот «эксцентрик» деформирует три «дольки», и образуется три молекулы АТФ. Помножив это на количество секунд в сутках и примерное количество АТФ-синтаз в организме, мы получим удивительную цифру: ежедневно в человеческом теле вырабатывается примерно 50 кг АТФ.

Все тонкости этого процесса необычайно сложны и многообразны. За их расшифровку, которая потребовала почти ста лет, были вручены две Нобелевские премии - в 1978 году Питеру Митчеллу и в 1997 году Джону Уокеру и Полю Бойеру.

Кинезин

Кинезин - это линейный молекулярный мотор, передвигающийся по клетке вдоль путепроводов - полимерных нитей. Будто портовый грузчик, он перетаскивает на себе всевозможные грузы (митохондрии, лизосомы), используя в качестве топлива молекулы АТФ.

Внешне кинезин похож на сплетенного из тонких веревок игрушечного «человечка»: он состоит из двух одинаковых полипептидных цепей, верхние концы которых сплетены и соединены вместе, а нижние расставлены в стороны и имеют на концах «ботинки» - глобулярные головки размером 7,5×4,5 нм. При движении эти головки на нижних концах поочередно отрываются от полимерной «тропинки», кинезин поворачивается на 180 градусов вокруг своей оси и переставляет одну из нижних «стоп» вперед. При этом если один его конец при движении тратит энергию (молекулу АТФ), то другой в это время высвобождает компонент для образования энергии, АДФ. В итоге получается непрерывный цикл подачи и траты энергии для полезной работы.

Как показали исследования, кинезин способен довольно бодро вышагивать по клетке своими «веревочными» ножками: делая шаг длиной всего 8 нм, за секунду он перемещается на гигантское по клеточным меркам расстояние в 800 нм, то есть делает 100 шагов в секунду. Попробуйте представить себе такие скорости в человеческом мире!

Искусственные наномашины

Человеком, который подтолкнул научный мир к созданию нанороботов на основе биологических молекулярных устройств, стал выдающийся ученый-физик, нобелевский лауреат Ричард Фейнман. Его лекцию 1959 года с символичным названием «Там внизу еще много места» биоинженеры всего мира считают отправной точкой в этом нелегком деле.

Прорыв, позволивший перейти от теории к практике, случился в начале 1990-х годов. Тогда английские ученые из Университета Шеффилда, Фрэйзер Стоддарт и Нил Спенсер, и их итальянский коллега Пьер Анелли сделали первый молекулярный челнок - синтетическое устройство, в котором происходит пространственное перемещение молекул. Для его создания используют ротаксан - искусственное вещество, в котором кольцевая молекула (кольцо) нанизана на линейную молекулу (ось). Отсюда и название вещества: лат. rota - колесо и axis - ось. Ось в ротаксане имеет форму гантели, чтобы с помощью объемных групп на концах не позволять кольцу соскальзывать со стержня.

Челнок на основе ротаксана перемещает кольцевую молекулу вдоль линейной, на которой она держится, с помощью протонов (ослабляя или увеличивая водородные связи, удерживающие по центру кольцевую молекулу) и броуновского движения, толкающего вперед кольцо. Это похоже на брошенный в ручей резиновый мячик, привязанный к веревке: ослабили веревку (водородные связи) и стремительный ручей (броуновское движение) подхватит мяч и увлечет его вперед. Натянули веревку - мяч возвратится назад.

В 2010 году группа американских биоинженеров, Милан Стоянович и его коллеги, создали молекулярного наноробота, способного перемещаться по ДНК. В ходе эксперимента ученые смогли проследить, как их наноробот смог самостоятельно сделать 50 шагов и передвинуться на 100 нм. Робот, внешне напоминающий паука, может автономно выполнять несколько команд: «идти», «повернуть», «остановиться». По мнению авторов, он очень востребован в медицине в качестве доставщика лекарств в клетку.

В 2013 году английские и шотландские биоинженеры под руководством Дэвида Лея смогли создать первый в мире молекулярный наноконвейер: наномашину, способную собирать пептиды, короткие белки. В природе эту задачу выполняют рибосомы - органеллы, находящиеся в наших клетках. Биоинженеры взяли за основу для своей машины молекулу ротаксана и на ее «стержне» смогли собрать из отдельных аминокислот белок заданного свойства. Правда, в соревновании с природной сборкой белков в рибосоме искусственная молекулярная машина пока проигрывает: ей понадобилось 12 часов на присоединение каждого аминокислотного остатка, в то время как рибосомы справляются с этой задачей быстрее чем за секунду.

Несмотря на это, исследователи с оптимизмом рассматривают свою разработку. «Вы получаете машину, которая точно движется, поднимает молекулярные строительные блоки и ставит их вместе. Если природа делает это, почему не можем мы?» - отметил профессор Лей.

Нанотехнологический робот наномашина (нанит), размеры которого измеряются в нанометрах Тематики биотехнологии EN nanobot … Справочник технического переводчика

нанобот

Нано шестерня Нанороботы, или наноботы роботы, размером сопоставимые с молекулой (менее 10 нм), обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, то есть… … Википедия

Нанотехнология - (Nanotechnology) Содержание Содержание 1. Определения и терминология 2. : история возникновения и развития 3. Фундаментальные положения Сканирующая зондовая микроскопия Наноматериалы Наночастицы Самоорганизация наночастиц Проблема образования… … Энциклопедия инвестора

Сущ., кол во синонимов: 2 нанобот (1) робот (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

nanobot - Nanobot Нанобот (наноробот) Программно управляемое наноразмерное устройство, созданное посредством молекулярной технологии и обладающее достаточной автономностью. Эти гипотетические устройства размером в единицы и десятки нанометров могут… … Толковый англо-русский словарь по нанотехнологии. - М.

наноробот Толковый англо-русский словарь по нанотехнологии. - М.

nanorobot - Nanorobot Наноробот (нанобот) Роботы, созданные из наноматериалов и размером сопоставимые с молекулой (менее 10 нм), обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих… … Толковый англо-русский словарь по нанотехнологии. - М.

Книги

  • Наносказочка , Сергей Лукьяненко , «В некотором пространстве и времени, в одной очень смешной реальности, жил да был некогда Крошка Нанобот. Происходил он из работящего племени Эшерихия Коли, к которому примешали немножко… Категория:

На протяжении долгого времени в научной фантастике говорилось о том, что в будущем для решения разных проблем будут использоваться крошечные роботы наниты. Наниты будут способны бороться с вирусными инфекциями, служить курьерами, доставляющими лекарства, помогать врачам проводить соответствующие операции и т. д. Некоторое время назад было объявлено о том, что прототип подобных нанитов уже был представлен шведскими учеными, но этот прототип был несовершенным, им невозможно было управлять.

Наноро́боты, или нанобо́ты - роботы, размером сопоставимые с молекулой (менее 100 нм), обладающие функциями движения, обработки и передачи информации, исполнения программ.

Нанороботы, способные к созданию своих копий, то есть самовоспроизводству, называются репликаторами. Возможность создания нанороботов рассмотрел в своей книге «Машины создания» американский учёный Эрик Дрекслер.

Другие определения описывают наноробота как машину, способную точно взаимодействовать с наноразмерными объектами или способной манипулировать объектами в наномасштабе. Вследствие этого, даже крупные аппараты, такие как атомно-силовой микроскоп можно считать нанороботами, так как он производит манипуляции объектами на наноуровне. Кроме того, даже обычных роботов, которые могут перемещаться с наноразмерной точностью, можно считать нанороботами.

Кроме слова «наноробот» также используют выражения «нанит» и «наноген», однако, технически правильным термином в контексте серьёзных инженерных исследований все равно остается первый вариант.

Более интересную и работающую версию нанитов создали ученые из Калифорнийского университета. Результатом их исследований стали микроскопические роботы, способные доставлять лекарства внутри организма, не вызывая при этом болевых ощущений или побочных эффектов.

Созданные роботы перенесли на себе частицы лекарственных препаратов, используя в качестве топлива пузырьки газа. Газ, кстати, является продуктом жизнедеятельности живого существа, он образуется внутри желудка. В качестве первого испытателя выступила лабораторная мышь, при этом она не испытывала какие-либо неудобства и осталась цела.

Ученые говорят о том, что такой результат говорит о большом прогрессе в отрасли, ведь созданные ими роботы смогли двигаться в организме со скоростью 60 микрометров в секунду. Для того чтобы доставить лекарство до пункта назначения (а в этом эксперименте им нужно было добраться до оболочки желудка), пришлось затратить некоторое время, при этом роботы оставались в желудке примерно двенадцать часов, это позволило им точечно впрыснуть лекарство и добиться предельной эффективности его действия.

После того, как наниты побывали в теле мыши, было произведено вскрытие, которое показало, что роботы абсолютно безопасно прошли весь путь и не нанесли повреждения тканям. При этом уровень токсического заражения остался в пределах нормы. Это говорит о том, что ученые добились своей цели и получили роботов, которые будут использоваться в будущем для повышения эффективности от лечения.

Сейчас ученые думают над тем, как увеличить скорость передвижения, а также об альтернативном топливе, так как использование газа может негативно сказаться на состоянии человека.