Можно ли прогнозировать землетрясения. Землетрясения

Добавив немного практических данных к вышеупомянутому ответу о взаимоотношениях Гутенберга-Рихтера, здесь приведен график совокупной вероятности землетрясений в конкретной провинции в Японии на основе наблюдаемых частот в течение многих сотен лет:

Взаимосвязь достоверно лог-линейна (в соответствии с G-R); если вы согласитесь, что отношения будут поддерживать более высокие величины, вы оцениваете вероятность события M10 в этом месте каждые 30 000 лет.

Чтобы получить оценку для «где угодно в мире», вам понадобятся кумулятивные данные для всех. Хорошим местом для начала является сайт USGS - у них есть удобный стол с данными с 1900 года .

Приняв эти данные и построив их на логарифмическом линейном графике, затем экстраполируя линейную подгонку, дается следующая диаграмма:

Это довольно страшно, потому что это говорит о том, что вероятность землетрясения M10 в любой точке мира составляет 1: 100 в любой конкретный год. Обратите внимание, что я построил данные для величиной x до x.9 в месте расположения x), который немного недооценивает ситуацию. Обратите также внимание на то, что в крайнем случае очень больших землетрясений (8 и выше) данные выглядят так, как будто они могут отклоняться от прямой линии, но не хватает данных, чтобы сделать какие-либо твердые выводы о форме.

Есть еще несколько оговорок. Во-первых, можно предположить, что модель может быть экстраполирована: конкретная ошибка не может быть сконструирована таким образом, чтобы хранить энергию, необходимую для события M10, поскольку она всегда будет выделять энергию до того, как она туда попадет (и там может быть эффектом «стресс-теней», в котором говорится, что после большого землетрясения вероятность еще одного крупного временно снижается, потому что стрессы были сняты, поэтому эту модель можно использовать только «в течение длительного периода» и делает не точно отражают риск землетрясения в ближайшие пять лет).

Тем не менее - один процент.

Величина 10 землетрясений действительно возможна, но очень маловероятна. Вы видите, что частота землетрясения определяется законом Гутенберга-Рихтера :

$$ N = 10 ^ {a-bM} $$

где $ N $ - число землетрясений $ \ ge M (величина) $ и $ a, b $ - константы. Как вы можете видеть, чем больше $ M $, тем меньше $ N $. $ a, b $ обычно решаются статистически, через наблюдательные данные и регрессию. Но по номиналу вы можете легко увидеть, что землетрясения большой величины становятся все менее и менее частыми на экспоненциальном уровне.

Что же такое землетрясение магнитудой 10 баллов? Моя догадка - зона субдукции, так как именно здесь происходят самые высокие землетрясения. Какая зона субдукции? Любое предположение так же хорошо, как и мое, Чили или Тонга, хотя важно также отметить, что величина землетрясения часто связана с размером ошибки: я не думаю, что существует ошибка, долгой/большой, чтобы генерировать $ M \ ge 10.0 $ землетрясение на Земле в настоящее время.

Возможны ли землетрясения магнитудой 10 баллов?

Идея «Мега-Квака» - землетрясение магнитудой 10 или больше - теоретически возможно, очень маловероятно. землетрясение величина частично основана на длине разломов - чем дольше ошибка, тем больше землетрясение. Простая истина заключается в том, что существуют нет известных неисправностей, способных генерировать величину 10 или больше «Мега-землетрясение» ()

Где землетрясения магнитудой 10 баллов наиболее вероятны?

Девять из десяти крупнейших землетрясений, которые произойдут в прошлом веке были события зоны субдукции. Это включает в себя Великий Чилийский 1960 Землетрясение, которое на М 9.5 было самым большим землетрясением, когда-либо зарегистрированным, землетрясение и цунами в Индийском океане в 2004 году, а также 2011 Tōhoku землетрясения и цунами. ()


Какова наиболее вероятная частота землетрясений магнитудой 10 баллов?

Если бы они были возможны, учитывая, что в письменной истории не записано ни одного слова, нет никакой возможности простить грехов без большой неопределенности. Исторические данные вводят в заблуждение. Объяснение см. в разделе: (1) " Это, вероятно, наблюдательный эффект, который довольно распространен в науках о Земле. « (2) " "

Насколько велики землетрясения магнитудой 10 баллов?

Очень большой. Чтобы понять, эта круговая диаграмма показывает, как общий сейсмический момент , выпущенный землетрясениями за период 1906 года -2005, с наибольшими индивидуальными землетрясениями (слева) и группами землетрясений (справа). Тонкая лента землетрясения в Сан-Франциско 1906 года также изображена для целей сравнения. M w обозначает величину землетрясения на масштабе момента времени .

CAPTION: Global seismic release from 1906 to 2005, the graph shows that almost 25% of the world earthquake energy in a century was concentrated in the Great Chilean Earthquake alone.

Это определенно возможно, хотя и не очень вероятно, как упоминалось выше. Необычно длинная зона субдукции, такая как траншея Перу-Чили, алеутская траншея или японо-камчатская впадина, должна была разрушить в целом , чтобы вызвать ее. Другими словами, это должно быть землетрясение, которое одновременно поражает Россию и Японию, или землетрясение, которое одновременно поражает Колумбию, Эквадор, Перу и Чили и т. Д.

Кроме того, землетрясение Moment Magnitude 10 не обязательно будет сильно отличаться с точки зрения того, как далеко отходят здания, скажем, от 8 или 9. Однако тряска будет продолжаться гораздо дольше - около 30 минут - и будет распространяться по гораздо большая площадь. И тогда, конечно, есть цунами, которые могут поражать землю , пока тряска все еще продолжается , что значительно увеличивает ущерб, который может вызвать землетрясение.

О землетрясениях мы знаем мало. Одно очевидно: землетрясение легче предупредить, чем справляться с его последствиями. Пока развивается космическая геодезия, сейсмологи наблюдают за животными, прислушиваются к народным приметам и следят за водой.

Всем миром в режиме online

Одной из самых быстроразвивающихся методик предупреждения землетрясений является мониторинг популярных социальных сетей. Отслеживая микроблог «Твиттера» по тегам, ученые могут отслеживать и предугадывать сейсмические процессы.

Самым успешным случаем применения этой по настоящему революционной технологии можно назвать оперативное реагирование на землетрясение, произошедшее в 2011 году в американском штате Вирджиния. Тогда исследователям удалось проанализировать информацию из микроблога и принять упреждающие меры.
Существенную помощь могут оказать также сейсмические мониторы. Они находятся в свободной продаже. Пользователи, обычные граждане, смогут передавать данные своих мониторов c помощью Wi-Fi или смартфонов.

Этот способ предупреждения катастрофы получает сегодня все большее распространение. Справляться с угрозой «всем миром» при помощи Интернета – чем не пример благого использования Всемирной паутины?

Спасительный телеграф

Сегодня землетрясения предсказывают, в том числе, с помощью специальных приборов сейсмографов, которые реагируют на горизонтальные и вертикальные движения. Их предшественником был, как ни странно, телеграф.

В 1897 году иранский кассир и телеграфист Юсеф из города Кермана заметил необычный электромагнитный сигнал, зафиксированный прибором, а через несколько минут произошло землетрясение. 27 октября 1909 года в Иране снова произошло землетрясение, его эпицентр находился в 58 км к юго-востоку от Кермана. И снова оператор станции принял его «послание», зафиксировав необычные движения телеграфной иглы, после чего ему удалось предупредить людей, работавших в здании, и они успели эвакуироваться. Юсеф понял, по колебаниям почвы и передаче электрического импульса по проводам можно предупреждать катастрофу. Он опубликован статью, в которой написал, что «если создать более сложный прибор, необычные движения иглы будут прогнозировать землетрясение за несколько секунд до того, как оно произойдет. А если прибор оснастить большим колоколом, его звук услышат множество людей, и их жизни будут спасены». Согласно геологу Мануэлю Бербериану, открытие Юсефа осталось незамеченным. Возможно, потому, что нескольких секунд не всегда достаточно, чтобы даже выбежать из дома.

«И реки потекут вспять»

Это не страшная фраза из пророчества о конце света, а основной принцип предсказания землетрясений сегодня. Очаги землетрясения обнаруживают с помощью грунтовых вод. Подземные реки протекают, в том числе, в зонах, где создается новый очаг землетрясения. Естественно, что вода реагирует на движение породных масс, которые выдавливают ее или наоборот увеличивают объем за счет изменения объема трещин и микропустот. В результате, меняется само поведение грунтовых вод, которое приводит к изменению уровня воды в колодцах и поворачивает реки вспять. За переменами следят в специальных скважинах, где перед землетрясением вода мутнеет или нагревается.

Живой сигнал

Боязнь перед неожиданным землетрясением – еще один повод завести себе домашнего питомца. В мире давно бытует мнение, что животные более чувствительны к мельчайшим изменениям в окружающем мире, нежели люди. Науке известно множество примеров, когда перед первыми толчками звери начинали вести себя необычно – кошки носились по комнате, собаки становились агрессивными и убегали из дома. Сверхчувствительные способности приписывают даже рыбам, которые уже за несколько дней до толчков проявляют беспокойство, скапливаются в одном месте или выбрасываются на берег. Такое поведение животных не могло пройти мимо внимания ученых и не натолкнуть их на еще один, казалось бы, очевидный способ предсказания катастрофы. Но проблема заключается в том, что пока не выявлена закономерность и причина изменения поведения разных видов фауны – для исследователей это не более чем череда случайностей.

Народные методы

Китай считается одной из самых сейсмологически опасных зон. Поэтому у китайцев исторически выработались свои «народные» способы предсказания землетрясений, уникальные в каждой деревне – где-то уровень воды изменился, где-то змеи из насиженных гнезд повыползали, а в соседнем курятнике куры раскудахтались. Как ни странно, с большими погрешностями, но метод работал. Чтобы хоть как-то систематизировать «народные традиции» и сделать из них эффективное оружие против катастрофы, Мао Цзэдун наладил связь – районы-центр. Люди должны были сообщать по почте или телефону в специальное учреждение обо всех необычных явлениях, которые могли быть предшественниками бедствия. Система функционировала, но не долго. Предупредив таким способом одно сильное землетрясение, она развалилась сразу же после смерти Мао. Результаты не заставили себя ждать. В 1976 году никто не предупредил центр о приближающейся трагедии. На Китай обрушилось сокрушительное Таншанское землетрясение, в котором погибло несколько сотен человек.

Космическая геодезия

Наиболее эффективный способ предсказывать землетрясения сегодня – это использование метода космической геодезии. Задаются потенциально опасные точки, а потом со спутников наблюдается движение поверхности и изменения в этом районе. Полученные данные используются для прогнозов. Лучше всего эта система функционирует в Японии, Калифорнии (США), Потсдаме (Германия) и, конечно же, в Китае. В России способ пока не развит, мы располагаем около 30 таких GPS пунктов на Камчатке и Курилах, в остальных районах они практически не представлены. Тем не менее, по сбываемости прогнозов отстаем не сильно – у США 50%, у нас порядка 40%. Показатели, как можно заметить, не особо высокие. В мире, по-прежнему, не существует хорошей теории прогноза землетрясений.

Последний способ, описанный нами, вполне соответствует поговорке «из огня да в полымя». Речь идет о предупреждении грядущего сильного землетрясения, с помощью более слабых толчков – форшоков, которые обычно ему предшествуют. Так как высокая форшоковая активность может начаться за несколько дней перед настоящей катастрофой, у властей есть шанс спасти население. Например, Китайское сейсмологическое бюро на этом основании начало эвакуацию миллиона человек за день до сильного землетрясения в 1975 году. К сожалению, у этого способа есть свои подводные камни. Несмотря на то, что половине крупных землетрясений предшествуют форшоки, из общего числа землетрясений, форшоками являются только 5-10%. Это приводит к ложным предупреждениям, которые слишком дорого обходятся государству.

Источник миниатюры: wikipedia.org

Книга о землетрясениях и связанных с ними явлениях природы. Рассказывается о том, почему происходят землетрясения. Приводятся малоизвестные сведения о сейсмических катастрофах прошлого и настоящего. О достижениях сейсмологии и о той роли, которую землетрясения играли и играют в истории человечества.

* * *

Приведённый ознакомительный фрагмент книги Катастрофы в природе: землетрясения (Б. С. Каррыев) предоставлен нашим книжным партнёром - компанией ЛитРес .

Возможен ли прогноз землетрясений?

Мне не нравится этот патологический интерес к прогнозу. Он отвлекает нас от уже известного риска и от уже известных мер, которые следует предпринять для устранения этого риска. Мы знаем, где находятся места, которым угрожает опасность, и какие постройки в этих местах ненадежны.

Чарльз Рихтер, 1960 год

Человек способен избежать угрозы только в том случае если он обладает информацией о ней. Знание позволяет избежать ошибок, но его отсутствие или нежелание применить всегда ведет к трагедиям. В конце концов, все бедствия являются следствиями тех или иных действий или отсутствия таковых. В этом смысле, презумпция невиновности землетрясений звучит так: строить необходимо как можно лучше там, где нет надёжных данных для оценки сейсмической опасности.

Инструментальные наблюдения, статистические методы и пространственно-временной анализ сейсмической активности позволили к концу XX века составить прогнозные карты сейсмического риска по всему миру. На них выделены отличающиеся по степени сейсмической опасности территории.

Карты строятся по разным методикам но, по сути, преследуют одну и туже цель – с некоторой вероятностью спрогнозировать сейсмические воздействия в том или ином месте. Эта информация во многих странах регламентируют нормы сейсмостойкого строительства. Она необходима для конструирования инженерных сооружений, планирования размещения ответственных объектов, градостроительства и т. д. Сейсмические прогнозы делаются уже много лет позволив спасти тысячи жизней, и сохранить значительные материальные ценности.

Собственно это и есть основанный данных научных исследований прогноз. Он подобен уже ставшими привычными способами предохранения человека в экстремальных ситуациях – от спасательных шлюпок на кораблях до подушек безопасности в автомобилях. Не факт что они когда-нибудь понадобятся, но вероятность экстремальных ситуаций никогда не бывает нулевой.

Оглушительные последствия сейсмических катастроф психологически неприемлемы для современного человечества. Поэтому, и чаще всего после разрушительных землетрясений, задаётся вопрос – почему о сильных землетрясениях невозможно предупреждать заблаговременно наподобие того как делаются прогнозы погоды?

Самые разные сообщения о предвестниках землетрясений давно привели к мысли, что предсказать момент возникновения подземного удара за годы, месяцы, дни и даже часы вполне возможно. Собственно для этого необходимо решить несколько задач.

Понять механизм возникновения землетрясений, выявить несколько надежных предвестников, создать систему мониторинга опасной зоны и сформировать службу для оповещения населения о «сейсмической погоде». Тем не менее, прошло уже немало лет с момента постановки этой проблемы, но технологии предсказания землетрясений нет, как нет успешных, т.е. позволивших спасти жизни людей точных прогнозов.

Энтузиазм 50-х годов прошлого века, когда казалось, что достаточно лишь определить несколько параметров для отслеживания состояния очаговой зоны и проблема своевременного прогноза будет решена, сменился осознанием существующей реальности. Дело здесь конечно не в нежелании или неумении ученых получать конкретные результаты, а в многофакторности такого явления как землетрясение.

Даже по одному перечню известных предвестников подземных ударов видно, что их достаточно сложно «слить» в один, но обязательный результат – заблаговременный, т.е. за часы или дни прогноз. Вместе с тем любая попытка прогноза полезна, поскольку приближает момент времени с которого, тем или иным образом, человечество избавится от сейсмической угрозы.

Считается, что моменту возникновения землетрясения предшествует этап интенсивного трещинообразования в области его очага. При этом растёт интенсивность сейсмического шума и увеличивается число микроземлетрясений. Вне зоны подготовки сильного землетрясения обнаружить эти признаки практически невозможно и возникает замкнутый круг – предвестники можно обнаружить там, где произойдёт подземный удар, но для этого надо знать, где он случится. В этой связи поиск предвестников землетрясений приводит к нескольким парадоксам.

Парадокс первый. Нельзя говорить о явлении как о предвестнике, поскольку таковым оно может быть названо только после землетрясения.

В самом деле, даже резкие изменения наблюдаемого параметра могут быть не связаны с процессом подготовки подземного удара, а возникнуть из-за неконтролируемых наблюдателем факторов. Только систематическое повторение того или иного явления, с понятной природой происхождения, может быть названо предвестником землетрясения.

Парадокс второй. По подавляющему числу землетрясений сообщений о предвестниках нет, но это не означает, что их вообще не было.

Можно констатировать, что сведения о предвестниках имеются только для очень небольшой части из происходивших на планете землетрясений. Но это означает только одно – сведения о предвестниках имеются там, где есть какие-либо системы наблюдений или там, где на них обращают внимание люди.

Как правило, специальных систем для регистрации предвестников нет. То, что имеется сегодня, получено благодаря системам наблюдений предназначенных для иных целей. Это могут быть датчики для измерения уровня воды в скважинах, приборы для измерения объемов нефтедобычи или любая другая, достаточно чувствительная, но много лет функционирующая промышленная система наблюдений. Подобно используемым для контроля режима грунтовых вод на городской или промышленной территории. Геофизическим и геодезическим измерениям выполненных в целях картографии, прокладки транспортных коммуникаций или различных путепроводов и т. п.

К примеру в районе Ашхабада до землетрясения 1948 года проводились нивелировки в целях картографии по профилю Красноводск-Ашхабад-Теджен в 1944 году. Сопоставив их с результатами измерений, проведенных спустя четыре года после землетрясения, было установлено, что в районе Ашхабада между 1944 и 1952 годами произошли значительные изменения земной поверхности. Более того, схожие изменения были установлены в районе очага разрушительного Казанджикского землетрясения 1946 года, произошедшего в этой же зоне. Правда, отдельный вопрос – возникли ли они до землетрясений или после них? Это лишний раз подчеркивает сложность обнаружения предвестников и ограниченные возможности исследователей.

Парадокс третий. Чтобы наблюдать предвестники необходимо знать где и когда произойдет землетрясение, а для того что бы знать где оно непременно случится надо обнаружить предвещающие его явления.

Иными словами, предвестники можно наблюдать только там, где происходят землетрясения, а не там где есть оборудование или учёные.

Исторически, на первом этапе, сейсмические обсерватории создавались там, где было удобно жить и работать исследователям. Этот подход себя оправдывал, поскольку дал возможность сформировать общее представление о сейсмичности и строении недр Земли. Только позднее, для получения детальной картины происходящих в очаговых зонах процессов пункты наблюдения начали размещать вблизи от мест, где происходят или происходили землетрясения.

Приборы для поиска предвестников не только должны находиться в зоне будущего землетрясения, но ими должны быть проведены т.н. фоновые наблюдения задолго до него. Иным образом доказать что то или иное явление действительно является предвестником не удастся. Сложность их поиска и в том, что большинство очагов сильных землетрясений находится под морским дном и в пустынных местах, где никаких научных наблюдений не ведётся, а зачастую нет и самих людей.

Естественно, что предвестниковый эффект может сопровождать и слабые землетрясения, которые происходят гораздо чаще чем сильные. Однако считается, чем больше энергия землетрясения, тем контрастнее и на большей площади могут проявиться предвестники. Следовательно, по слабым землетрясениям выявить предвестниковые закономерности технически сложно, если вообще возможно.

Используемая сегодня геофизическая, геодезическая аппаратура и другие виды приборов, как правило, не предназначены для поиска предвестников землетрясений. К тому же приборы устанавливаются в разных условиях с разным режимом работы. Соответственно полученные данные чаще всего несопоставимы по разным регионам мира, а обнаруженные аномалии оставляют широкое поле для размышлений о возможной их связи с процессом подготовки землетрясения.


Изменение высот реперов по линии повторного нивелирования Красноводск-Ашхабад-Теджен за 1944 (1) и 1952 (2) годы (Колибаев, 1962; Рустанович, 1961).


В тех случаях, когда все же удавалось перед землетрясениями наблюдать однотипные явления, оказалось, что они ведут себя по-разному. В одних случаях можно наблюдать повышение дебита и температуры воды в источниках перед землетрясением. В других, эти же параметры ведут себя наоборот – скважины пересыхают или температура воды в них уменьшалась. Если перед некоторыми землетрясениями регистрировались быстрые наклоны земной поверхности или интенсивные аномалии подпочвенных газов (радона и других), то перед другими подобных изменений не обнаруживалось и т. д.

Особенно контрастно противоречивость предвещающих сильное землетрясение явлений выявляется при анализе данных о слабой или фоновой сейсмичности. При одних землетрясениях происходит заметная активизация сейсмической активности, и главный удар может претворяться серией мелких землетрясений – форшоками. При других сильное землетрясение буквально возникает на «пустом месте» там, где в течение длительного времени не было заметной сейсмической активности, т.н. сейсмические бреши.

Вместе с тем, одно общее свойство у всех обнаруженных предвестников есть. Почти никогда в том месте, где они обнаруживались, не имелось достаточного периода наблюдений для их однозначного признания таковыми. Вообще, проблема получения длительных и непрерывных рядов наблюдений изначально стояла и стоит в науке о землетрясениях.

В самом деле, сегодня ни один врач не возьмется лечить больного (экстремальные ситуации исключаем) без истории его болезни и анализов. Здесь все понятно и не требует объяснений. Можно сказать это каждый испытал на себе. Несколько сложнее объяснить, зачем необходима предыстория и непрерывные наблюдения для прогноза землетрясений.

Контролирующие и предупреждающие аварии системы строятся по принципу заданных или заранее известных пределов характеризующих их нормальное состояние. Они базируются на определённых по результатам испытаний рабочих параметрах системы или устройства, отклонение от которых принимается за аварийное состояние. Возникающие из-за тектонических подвижек землетрясения сложно характеризовать каким-либо одним набором стандартных параметров. Их очаги располагаются на недостижимых для современных приборов глубинах на которых свойства вещества точно неизвестны.

К примеру, месторождения полезных ископаемых можно обнаружить глубоко в недрах благодаря дистанционным методам по изменению сейсмических свойств среды и подтвердить результатами бурения. В отношение же будущего очага землетрясения сделать это невозможно.


Изменение уровня радона перед землетрясением в Японии (Кобе, 1995).


Если попытаться выявить аномалию, предвестник приближающегося землетрясения по уровню воды в скважине, то сначала надо пробурить скважину и тем самым уже внести непонятное по последствиям возмущение в природное равновесие. Затем необходимо провести многолетние наблюдения за уровнем воды в ней и, если будут зафиксированы изменения, определить природу их происхождения. При этом всегда будут оставаться сомнения – в нужном ли месте пробурена скважина или связаны ли наблюдаемые в ней изменения именно с подготовкой землетрясения, а не с другими более естественными факторами. Почему так происходит?

Во-первых, народная мудрость «знать, где упадешь – солому подстелил бы», олицетворяющая бытовой парадокс, становится парадоксом наблюдения предвестников и научных бюджетов.

Если есть предположение, где ожидается землетрясение, можно заранее разместить датчики для регистрации быстропротекающих геофизических процессов. Однако это удается сделать крайне редко, и не всегда у исследователей есть возможность проводить подобные исследования. Оказывается дорого и экономически невыгодно вести многолетние (скорей всего в течение десятков лет) наблюдения геофизических полей где-то на Тянь-Шане, Гималаях или Андах только для того, что бы уловить важный признак подготовки землетрясения, которое само по себе может не принести особого вреда людям. Тем не менее, по-другому понять природу предвестников вряд ли получится.

Во-вторых, даже если очаг землетрясения расположен недалеко от большого города обеспеченного надлежащей системой наблюдений, хороший результат, именно здесь можно не получить. Жизнедеятельность города вносит большие возмущения в естественное состояние природной среды, на фоне которых выделить признаки приближающегося землетрясения очень сложно.

В-третьих, в отличие от регистрации сейсмических колебаний, очаговая зона для других видов наблюдений – геофизических, геодезических, гидрологических и т. д. не имеет заданных для определения тревожного периода параметров среды. Поэтому для выводов об её естественном или аномальном состоянии необходимо проводить многолетние наблюдения.

Современный этап изучения землетрясений в значительной мере связан с компьютеризацией, снявшей тяжкое бремя ручным способом обрабатывать записи и данные о землетрясениях. Компьютеры позволили быстро собирать, обрабатывать и передавать большие массивы информации, применять методы моделирования ситуаций для определения тревожного периода.

Возможно ситуация изменится с появлением искусственного интеллекта (ИСКИН). Тем не менее, и ему потребуются достоверные данные, с которыми без человеческой интуиции ему будет сложно сделать правильные заключения. Мощность компьютерных систем растёт с каждым годом, появились глобальные системы наблюдения за состоянием окружающей среды, и это повышает эффективность поиска связанных с подготовкой землетрясений явлений.


Изменение уровня высокочастотных шумов перед ощутимым землетрясением в районе Ашхабада, 1982 год (Каррыев, 1985).


В 30-е годы прошлого века американский математик Джон фон Нейман, рассуждая о перспективах применения вычислительных методов для предсказания погоды, заметил: «Климат определяется процессами устойчивыми и неустойчивыми, то есть такими, которые зависят от малых возмущений. Вычислительные машины позволят нам рассчитывать и первые, и вторые. И тогда мы сможем предсказывать всё, чем не можем управлять, и управлять всем, что не можем предсказывать».

В отношении погоды многое из сказанного оказалось верным, но в прогнозе землетрясений всё оказалось не так. Тем не менее, известные на сегодня предвестники уже классифицированы. Выяснилась, опять-таки ретроспективно, что все они проявляются по-разному в разных обстоятельствах, но главным образом связаны с геолого-геофизическими особенностями строения земных недр том или ином месте. Поэтому отдавая должное состоянию изучения предвестников землетрясений, японский сейсмолог Кэити Касахара много лет назад заметил: «Научные исследования по предсказанию находятся все еще на стадии, когда существенную роль играет эмпиризм. Поэтому важное значение для нас имеет документирование уже произошедших событий».

Отдельный вопрос об ответственности ученых и не ученых за ложные или недостоверные прогнозы, точнее – за предсказания землетрясений и прочих превратностей природы. Как правило, подобные предсказания могут вызвать экономические последствия и реже человеческие жертвы. Первопричина этого хорошо известна – историческая память людей о перенесенных страданиях и бедах, подогреваемая религиозными утверждениями о неминуемом наказании людей и т.п., делает их особенно уязвимыми к подобным сообщениям. Это одна сторона вопроса.

Другая, более серьезная, связана с введением в заблуждение населения о реальной угрозе. Примеров тому много. От занижения уровня опасности в то время когда она вполне реальна при строительстве, планировании защитных мер и др. Такое происходило на территории бывшего СССР неоднократно. Случаи игнорирования реальной угрозы многочисленны, как в экономически развитых так и в бедных странах. Показателен случай произошедший в итальянском городе Л"Акуила.

В 2014 году апелляционный суд итальянского города Л"Акуила оправдал семерых экспертов комиссии по определению рисков, которых ранее приговорили к шести годам тюремного заключения за то, что они ошиблись в оценке сейсмической ситуации в городе в 2009 году. Дело было возбуждено, так как около тридцати жителей города обратились с официальным запросом в судебные органы. Они посчитали, что ученые должны были, по крайней мере, за несколько дней предупредить город об опасности.

Землетрясение в Л’Акуиле с М = 6,3 по шкале Рихтера произошло 6 апреля 2009 года в 3:32 часа ночи по местному времени. По данным Национального института геофизики и вулканологии Италии гипоцентр землетрясения находился на глубине 8,8 км, в пяти километрах от центра города. Число погибших на вечер 11 апреля 2009 составило 293 человека, 10 человек пропали без вести, без крова осталось 29 тысяч человек.

Предыстория такова. В течение шести месяцев перед крупным землетрясением в городе ощущались слабые землетрясения. В окрестности будущего землетрясения регистрировалась аномальная сейсмическая активность. За неделю до основного толчка 30 марта и непосредственно перед ним произошли два форшока с магнитудами около четырёх по шкале Рихтера на очень небольшой глубине – около двух километрах от земной поверхности.

31 марта, за шесть дней до трагедии, служба защиты населения встречалась с комиссией по оценке рисков из шести ученых для оценки возможности возникновения сильного землетрясения. Комиссия заключила, что «нет причин предполагать, что серия второстепенных землетрясений – это прелюдия к серьезному сейсмическому событию», и «крупное землетрясение в этом регионе маловероятно, хотя и не исключено».

Тем не менее, землетрясение произошло, и шесть ученых, среди которых был президент Национального института геофизики и вулканологии в Риме Энцо Боски стали фигурантами дела об убийстве. С одной стороны это нетипичный случай когда учённых обвинили в уголовном преступлении. С другой, вопрос состоит в том, что несмотря на все опасные признаки эксперты не предупредили жителей о возможности землетрясения.

Практика показала, что угроза была реальной и люди, положившиеся на собственные ощущения, не пострадали. С другой стороны понимание угрозы позволяло заблаговременно принять меры по повышению сейсмоустойчивости зданий и подготовке населения к чрезвычайной ситуации. Разумеется, это дело не ученых, а администраторов всех уровней, точнее в системе государственного управления, одной из задач которой является обеспечение защиты своих граждан. Схожий пример можно найти в Японии.

Великое землетрясение Хансин в Кобе произошло 17 января 1995 года. Перед главным толчком сейсмическая обсерватория зафиксировала несколько форшоков в очаговой зоне землетрясения. До землетрясения Хансин в районе города не происходило сильных землетрясений почти 400 лет. Иными словами были все предпосылки оценить угрозу как реальную и заблаговременно принять необходимые меры.

Последствия землетрясения оказались ужасны, поскольку город и его жители не были готовы к нему. Ретроспективно выявлены факторы обусловившие масштаб трагедии и, казалось бы, сделаны все необходимые выводы. Тем не менее, следующая трагедия в Японии – землетрясение у восточного побережья острова Хонсю 11 марта 2011 года, показало очередную неспособность властей правильно оценивать природные угрозы. Не только в плане превентивных мер, но и моделирования сбоев как в системе управления, так и обеспечения безопасности крупных инфраструктурных узлов и атомных электростанций.

В 2013 году верховный суд Чили обязал правительство страны выплатить компенсацию семье Марио Овандо, погибшего во время цунами в феврале 2010 года. Судя по всему, решение суда о компенсации родственникам ста тысяч долларов может открыть дорогу сотням подобных жалоб. Можно согласиться с доводами семьи Овандо, что гибель Марио это результат халатности властей объявивших в роковую ночь о нулевой опасности цунами. Вскоре после радиообращения стихия смыла дом Марио Овандо в порту Талькауано на юге страны. Всего из-за землетрясения и цунами в Чили, погибло около 500 человек.

Иными словами, официальные сообщения об отсутствии опасности при её наличии приводит к трагедиям. К подобным случаям можно отнести события в Л"Акуила, Кобе и Факусиме. Большой риск утверждать, что ничего не будет в ситуации, когда нет ни методологии, ни данных для прогноза, ведь само предположение о минимальном риске природной катастрофы по сути и есть самый настоящий прогноз.

Если нет сейсмической истории исследуемой территории то, по каким данным можно дать прогноз за один день, неделю, месяц или год до предполагаемого землетрясения?

Учёные предполагают, что с приближением землетрясения изменяются физико-химические свойства среды в его очаге. Следовательно, даже не имея представления о сейсмическом режиме территории и наблюдая в течение длительного периода времени за состоянием недр различными методами (сейсмоакустика, режим подземных вод, гравиметрия, нивелировка, электромагнитные измерения и т.д.) можно обнаружить момент подготовки землетрясения. Отчасти это подтверждается результатами лабораторных экспериментов и натурных наблюдений. Некоторым образом об этом свидетельствуют многочисленные факты аномального поведения животных перед подземным ударом.

Конец ознакомительного фрагмента.

Земле присуще одно прискорбное свойство: она временами уходит из-под ног, и не всегда это связано с результатами бодрой вечеринки в дружеском кругу. От сотрясений почвы встает дыбом асфальт, рушатся дома. Да что там дома?! — катастрофические землетрясения могут вздымать или разрушать горы, осушать озера, разворачивать реки. Жителям домов, гор и побережий в таких ситуациях остается только одно: пытаться уцелеть, насколько это окажется возможным.

Люди сталкивались с буйством земной тверди примерно с тех времен, когда спустились на эту твердь с деревьев. Видимо, к началу человеческой эпохи относятся и первые попытки объяснить природу землетрясений, в которых обильно фигурируют подземные боги, демоны и прочие псевдонимы тектонических движений. По мере того как наши предки обзаводились постоянным жильем с прилагаемыми к нему крепостями и курятниками, урон от сотрясений почвы под ними становился больше, а желание задобрить Вулкана или хотя бы предсказать его немилость — сильнее.

Впрочем, разные страны в древности сотрясались разными сущностями. Японская версия отводит ведущую роль живущим под землей гигантским сомам, которые иногда шевелятся. В марте 2011 года очередное рыбье буйство привело к сильнейшему землетрясению и цунами.


Схема распространения цунами в акватории Тихого океана. На картине цветом показана высота расходящихся в разные стороны волн, порожденных землетрясением вблизи Японии. Напомним, что подземный толчок 11 марта обрушил на побережье Японии волну цунами, приведшую к гибели не менее 20 тысяч человек, обширным разрушениям и превращению слова «Фукусима» в синоним Чернобыля. Реагирование на цунами требует большой оперативности. Скорость океанских волн измеряется километрами в час, а сейсмических — километрами в секунду. За счет этого возникает запас времени в 10−15 минут, за которые нужно оповестить жителей угрожаемой территории.

Неустойчивая твердь

Земная кора находится в очень медленном, но непрерывном движении. Громадные блоки напирают друг на друга и деформируются. Когда напряжения превышают предел прочности, деформация становится неупругой — земная твердь ломается, а пласты смещаются вдоль разлома с упругой отдачей. Впервые эту теорию предложил почти сто лет назад американский геофизик Гарри Рейд, изучавший землетрясение 1906 года, почти полностью разрушившее Сан-Франциско. С тех пор учеными было предложено множество теорий, по‑разному детализирующих ход событий, но первооснова осталась в общих чертах той же.


Глубина моря изменчива. Приходу цунами часто предшествует отступление воды от берега. Упругие деформации земной коры, предшествующие землетрясению, оставляют воду на месте, но глубина дна относительно уровня моря при этом часто меняется. Мониторинг морской глубины осуществляется сетью специальных приборов — мареографов, установленных как на берегу, так и на удалении от берега.

Многообразие версий, увы, не увеличивает объем знаний. Известно, что очаг (по-научному — гипоцентр) землетрясения представляет собой протяженную область, в которой и происходит разрушение горных пород с выделением энергии. Ее объемы прямо связаны с размерами гипоцентра — чем он больше, тем сотрясения сильнее. Очаги разрушительных землетрясений простираются на десятки и сотни километров. Так, очаг Камчатского землетрясения 1952 года имел длину около 500 км, а Суматранского, вызвавшего в декабре 2004 года самое страшное в современной истории цунами, — не менее 1300 км.

Размеры гипоцентра зависят не только от накопленных в нем напряжений, но и от физической прочности горных пород. Каждый отдельный пласт, оказавшийся в зоне разрушения, может как треснуть, увеличивая масштаб события, так и устоять. Конечный результат в итоге оказывается зависимым от множества невидимых с поверхности факторов.


Тектоника в картинках. Столкновение литосферных плин приводит к их деформации и накоплению напряжений.

Сейсмический климат

Сейсмическое районирование территории позволяет предсказать силу возможных в данном месте подземных толчков, пусть даже и без указания точных места и времени. Полученную карту можно сравнить с климатической, вот только вместо атмосферного климата на ней отображен сейсмический — оценка возможной в данном месте силы землетрясения.

Исходной информацией служат данные о сейсмической активности в прошлом. К сожалению, история инструментальных наблюдений за сейсмическими процессами насчитывает немногим более ста лет, а во многих регионах — того меньше. Некоторую помощь может оказать сбор данных из исторических источников: описаний даже античных авторов обычно достаточно, чтобы определить балльность землетрясения, поскольку соответствующие шкалы построены на основе бытовых последствий — разрушения зданий, реакции людей и т. п. Но и этого, конечно, недостаточно — человечество еще слишком молодо. Если в каком-то регионе за последние пару тысяч лет не было десятибалльного землетрясения, это еще не значит, что оно не произойдет там в следующем году. Пока речь идет о рядовом малоэтажном строительстве, с риском такого уровня можно мириться, но размещение АЭС, нефтепроводов и прочих потенциально опасных объектов требует явно большей точности.

Проблема оказывается решаемой, если от отдельных землетрясений перейти к рассмотрению потока сейсмических событий, характеризующегося определенными закономерностями, в том числе плотностью и повторяемостью. В этом случае можно установить зависимость периодичности землетрясений от их силы. Чем слабее землетрясения, тем больше их количество. Эта зависимость поддается анализу математическими методами, и, установив ее для какого-то промежутка времени, пусть небольшого, но обеспеченного инструментальными наблюдениями, можно с достаточной надежностью экстраполировать ход событий через сотни и даже тысячи лет. Вероятностный подход позволяет накладывать приемлемые по точности ограничения на масштабы будущих катастроф.


Карта сейсмического районирования ОСР-97D. Цветами показана максимальная разрушительная сила землетрясений с периодом повторения порядка 10000 лет. Эта карта используется при строительстве АЭС и прочих особо ответственных объектов. Одним из проявлений земной активности являются вулканы. Их извержения красочны и порой разрушительны, но вот порождаемые ими сейсмические толчки, как правило, слабы и самостоятельной угрозы не представляют.

В качестве примера того, как это делается, можно привести действующий сейчас в России комплект карт сейсмического районирования ОСР-97. При его составлении были по геологическим данным выявлены разломы — потенциальные источники землетрясений. Их сейсмическая активность была смоделирована с применением весьма непростой математики. Виртуальные потоки сейсмических событий были затем сверены с реальностью. Получившиеся зависимости можно было относительно уверенно экстраполировать в будущее. Итогом стала серия карт, показывающих максимальный балл событий, могущих повторяться на данной территории с периодичностью от 100 до 10000 лет.


Предвестники беды

Сейсмическое районирование дает возможность понять, где «подложить соломку». Но, чтобы свести урон к минимуму, хорошо бы знать время и место события точно — кроме оценки «климата» иметь и прогноз «погоды».

Самый впечатляющий краткосрочный прогноз землетрясения был сделан в 1975 году в китайском городе Хайчен. Ученые, наблюдавшие за сейсмической активностью несколько лет, объявили тревогу 4 февраля около 14 часов. Жители были выведены на улицы, а магазины и промышленные предприятия закрыты. Землетрясение с магнитудой 7,3 произошло в 19:36, город подвергся значительным разрушениям, но человеческих жертв было мало. Увы, этот пример пока остается одним из очень немногих.

Накапливающиеся в земной толще напряжения приводят к изменениям ее свойств, и их в большинстве случаев вполне можно «поймать» приборами. Таких изменений — сейсмологи называют их предвестниками — на сегодня известно несколько сотен, и их перечень год за годом растет. Нарастающие напряжения земли изменяют скорость упругих волн в них, электропроводность, уровень подземных вод и т. д.


Одно из типичных последствий разрушительного землетрясения. Специалисты оценили бы интенсивность встряски примерно в 10 баллов (по 12-балльной шкале).

Проблема заключается в том, что предвестники капризны. Они ведут себя по‑разному в разных регионах, представая перед исследователями в разных, подчас причудливых сочетаниях. Чтобы уверенно сложить «мозаику», надо знать правила ее составления, но полной информации у нас нет и не факт, что когда-то будет.

Исследования 1950 -1970-х показали корреляцию содержания радона в подземных водах в районе Ташкента с сейсмической активностью. Содержание радона перед землетрясениями в радиусе до 100 км изменялось за 7−9 дней до толчка, вначале увеличиваясь до максимума (за пять дней), а затем снижаясь. Но аналогичные исследования в Киргизии и на Тянь-Шане устойчивой корреляции не показали.

Упругие деформации земной коры приводят к относительно быстрому (месяцы и годы) изменению высоты местности. Эти изменения уже давно и надежно «ловятся». В начале 1970-х американские специалисты выявили поднятие поверхности возле городка Палмдейл в Калифорнии, стоящего прямо на разломе Сан-Андреас, которому штат обязан репутацией сейсмически беспокойного места. На попытки отследить развитие событий и вовремя предупредить были брошены немалые силы, деньги и оборудование. К середине 1970-х подъем поверхности вырос до 35 см. Было отмечено также уменьшение скорости упругих волн в земной толще. Наблюдения за предвестниками продолжались много лет, стоили немалых долларов, но… катастрофы не произошло, состояние местности постепенно вернулось к норме.

В последние годы наметились новые подходы к прогнозированию, связанные с рассмотрением сейсмической активности на глобальном уровне. В частности, о прогностических успехах сообщали камчатские сейсмологи, традиционно находящиеся на «переднем крае» науки. Но отношение к прогностике ученого мира в целом все же будет правильнее охарактеризовать как осторожный скептицизм.

Можно ли предсказать землетрясение? За прошедшие века было предложено много способов предсказания-от учета по­годных условий, типичных для землетрясений, до наблюдений за положением небесных тел и за странностями в поведении жи­вотных. Большинство попыток предсказать землетрясение было безуспешным.

С начала 1960-х годов научные исследования по прогнозу зе­млетрясений приняли невиданный размах, особенно в Японии, СССР, КНР и США. Их цель-добиться в предсказаний земле­трясений по крайней мере такой же надежности, как в прогнозе погоды. Наибольшей известностью пользуется предсказание времени и места возникновения разрушительного землетрясения, особенно краткосрочный прогноз. Однако существует и другой вид прогноза землетрясений: оценка интенсивности сейсмических сотрясений, ожидаемых в каждом отдельном районе. Этот фак­тор играет главную роль при выборе участков для строительства таких важных сооружений, как плотины, больницы, ядерные ре­акторы, и в конечном счете наиболее важен для уменьшения сейсмической опасности. В данной главе мы рассмотрим на­учный подход к прогнозу времени и места землетрясений, а ме­тоды прогноза сильных колебаний грунта опишем в гл 11.

Как было указано в гл. 1, изучение характера сейсмичности на Земле за исторический период времени позволило предсказывать те места, где в будущем могут возникать разрушительные земле­

Трясения. Однако хроника прошлых землетрясений не дает воз­можности прогнозировать точное время следующей катастрофы. Даже в Китае, где за последние 2700 лет произошло от 500 до 1000 опустошительных землетрясений, статистический анализ невыявил четкой периодичности сильнейших землетрясений, но по­казал, что крупные катастрофы могут разделяться длительными периодами сейсмического молчания.

В Японии, где также существует длительная статистика зе­млетрясений (рис. 1), начиная с 1962 г. проводятся интенсивные исследования по прогнозу землетрясений, но пока они не принес­ли определенного успеха. (Впрочем, надо иметь в виду, что в по­следние годы на Японских островах не происходило крупных разрушительных землетрясений, хотя отмечено много слабых толчков.) Японская программа, объединяющая усилия сотен сейсмологов, геофизиков и геодезистов, привела к получению огромного количества разнообразных сведений и позволила вы­делить много признаков готовящегося землетрясения. Один из самых примечательных предвестников землетрясений среди из­ученных до сих пор-явления, отмеченные на западном побе­режье японского острова Хонсю. Проводившиеся там геодезиче­ские измерения показали (см. графики на рис. 2), что в окрестно­стях города Ниигата в течение примерно 60 лет происходило не­прерывное поднятие и опускание береговой линии. В конце 1950-х годов скорость этого процесса уменьшилась; затем во время землетрясения Ниигата 16 июня 1964 г. в северной части этого района (вблизи эпицентра) было отмечено резкое опуска­ние величиной более 20 см. Характер распределения верти­кальных движений, показанный на графиках рис. 2, был выяснен только после землетрясения.
Но в случае повторения таких крупных изменений высоты рельефа это, несомненно, послужит некоторым предостережением. Позднее в Японии было проведе­но специальное изучение исторических циклов землетрясений в окрестностях Токио, а также были выполнены локальные изме­рения современной деформации коры и частоты землетрясений. Полученные результаты позволили некоторым японским сейсмо­логам предположить, что повторения сильнейшего землетрясе­ния Канто (1923 г.) в настоящее время не ожидается, но что в со­седних районах землетрясения не исключены.

С начала нашего столетия, если не раньше, стали выдвигаться предположения о разных типах «спусковых механизмов», спо­собных вызвать начальную подвижку в очаге землетрясения. Среди наиболее серьезных предположений-роль суровых по­годных условий, вулканических извержений, гравитационное при­тяжение Луны, Солнца и планет). Чтобы найти такие эффекты, были проанализированы многочисленные каталоги землетрясений,

в том числе весьма полные списки для Калифорнии, но определенных результатов получено не было. Например, выдви­нуто предположение о том, что, поскольку каждые 179 лет пла­неты оказываются приблизительно на одной линии, возникаю­щее при этом дополнительное притяжение вызывает резкое усиление сейсмичности. Следующее такое расположение планет ожидается в 1982 г. Разлом Сан-Андреас в южной Калифорнии не производил разрушительных сейсмических толчков после зе­млетрясения Форт-Техон в 1857 г., так что воздействие этого «планетного» спускового механизма на указанный разлом в 1982 г. можно было бы считать особенно вероятным. К счастью для Калифорнии, этот аргумент имеет серьезные изъ­яны. Во-первых, мировые каталоги землетрясений показывают, что в прошлые эпизоды такого расположения планет: в 1803, 1624 и 1445 г.-усиления сейсмической активности не наблюда­лось. Во-вторых, дополнительное притяжение относительно не­больших или отдаленных планет незначительно по сравнению с взаимодействием между Землей и Солнцем. Значит, помимо 179-летней надо рассматривать и возможность множества других периодичностей, связанных с совместным действием наиболее крупных небесных тел.

Чтобы обеспечить надежный прогноз, такой как предсказание фаз Луны или результата химической реакции, необходима, как правило, прочная теоретическая основа. К сожалению, в настоя­щее время точно сформулированной теории происхождения зе­млетрясений все еще нет. Тем не менее на основе наших нынеш­них, пусть ограниченных, знаний о том, где и когда происходят сейсмические толчки, мы может делать грубые предсказания то­го, когда на том или ином известном разломе можно ожидать следующее сильнейшее землетрясение. Действительно, после зе­млетрясения 1906 г. Г.Ф. Рид, используя теорию упругой отдачи (описанную в гл. 4), заявил, что следующее сильнейшее землетря­сение в районе Сан-Франциско должно произойти примерно че­рез сто лет.

Вкратце его аргументы сводились к следующему. Геодезиче­ские измерения, выполненные поперек разлома Сан-Андреас перед землетрясением 1906 г., показали, что относительное сме­щение по разные стороны разлома за 50 лет достигло величины 3,2 м. После того как 18 апреля 1906 г. на этом разломе про­изошла упругая отдача, максимальное относительное смещение составило около 6,5 м. Произведя арифметический расчет, полу­чаем: (6,5:3,2)-50 = 100. Следовательно, до следующего сильней­шего землетрясения должно пройти 100 лет. При таком расчете мы должны сделать довольно слабо обоснованное допущение, что региональная деформация происходит равномерно и что свой­ства разлома, существовавшие перед землетрясением 1906 г., в результате этого землетрясения не изменились. Благоразумие требует от нас учитывать и то, что вдоль разлома Сан-Андреас в ближайшие столетия может произойти не новое землетрясение с магнитудой 8,25, а целый ряд толчков более умеренной силы.

В настоящее время производится много экспериментальных работ, исследуются различные явления (перечисляемые в следую­щем разделе), которые могут оказаться предвестниками, «симп­томами» готовящегося землетрясения. Хотя попытки всеобъе­млющего решения проблемы и выглядят довольно внушительно, они дают мало оснований для оптимизма: едва ли система про­гноза будет практически реализована в большинстве районов ми­ра в ближайшем будущем. К тому же методы, которые кажутся сейчас наиболее перспективными, требуют весьма сложного обо­рудования и больших усилий работников науки. Создание сетей прогностических станций во всех зонах высокого сейсмического риска было бы чрезвычайно дорогостоящим Мероприятием.

Кроме того, с прогнозом землетрясений неразрывно связана одна важнейшая дилемма. Предположим, данные сейсмологиче­ских измерений указывают на то, что на определенной площади в определенный период времени произойдет землетрясение опре­деленной магнитуды. Надо полагать, что данная площадь и раньше считалась сейсмичной, иначе на ней не проводились бы подобные исследования. Отсюда следует, что если’ в указанный период землетрясение действительно произойдет, это может ока­заться простым совпадением и не будет веским доказательством того, что использованные для прогноза методы верны и не при­ведут к ошибкам в будущем. И конечно, если будет сделан кон­кретный прогноз, а ничего не произойдет, это будет воспринято как доказательство того, что метод ненадежен.

В последнее время в Калифорнии сильно активизировалась деятельность, связанная с прогнозом землетрясений, в результате чего в 1975 г. был образован научный совет, задачей которого является оценка надежности прогнозов для ведомства штата по мерам в случае чрезвычайного положения и, следовательно, для губернатора штата. Совет играет важную, но все же не решаю­щую роль в определении реального значения тех или иных данных и заявлений отдельных лиц или групп (обычно это за­явление сейсмолога или сейсмологов, работающих в какой-либо государственной или университетской лаборатории). Рекоменда­ции совета не касаются времени и содержания публичного опове­щения об опасности, выпускаемого властями штата. По состоя­нию на 1978 г., этому совету только в двух случаях пришлось заниматься вопросами, касающимися ожидаемых в Калифорнии землетрясений.

Было решено, что каждый подлежащий рассмотрению про­гноз должен включать четыре основных элемента: 1) время, в те­чение которого произойдет данное событие, 2) место, в котором оно произойдет, 3) пределы магнитуды, 4) оценку вероятности случайного совпадения, т.е. того, что землетрясение произойдет вне связи с явлениями, подвергавшимися специальному изуче­нию.

Значение деятельности такого совета не только в том, что он выполняет задание властей, ответственных за обеспечение мини­мальных потерь при землетрясении, но и в том, что проявляемая этим советом осмотрительность полезна для ученых, составляю­щих прогнозы, так как обеспечивает независимую проверку. В более широком социальном плане такое научное жюри помо­гает отсеивать необоснованные предсказания всякого рода ясно­видцев, а иногда и недобросовестных людей, ищущих известно­сти-пусть даже временной-или денежной выгоды.

Социальные и экономические следствия прогноза землетрясе­ний вызывают противоречивые толкования. По мере развития сейсмологических исследований в различных странах, вероятно, будут делаться многочисленные предсказания землетрясений, ко­торые должны возникнуть в вероятных очаговых зонах. Напри­мер, в Китае уже выпущено много таких прогнозов, и мы рас­смотрим их позже в этой главе.

В западных странах проведено изучение отрицательных, рав­но как и положительных следствий прогноза. Если бы, например, в Калифорнии можно было уверенно предсказать время крупно­го разрушительного землетрясения примерно за год до ожидае­мого срока и затем непрерывно уточнять его, то число жертв и даже величина материального ущерба от этого землетрясения значительно сократились бы, но общественные связи в плейсто-сейстовой области были бы нарушены, а местная экономика при­шла бы в упадок. Важнейшие социальные и экономические ре­зультаты такого прогноза иллюстрирует дополнение 6 ниже в этой главе. Конечно, без практической проверки такие оценки выглядят весьма умозрительными; общие последствия будут в высшей степени сложными, поскольку реакция государственно­го, общественного и частного секторов может оказаться совер­шенно различной. Например, если после научного прогноза и официального предупреждения резко возрастет общественная потребность в страховании от землетрясений, это подорвет его доступность и окажет временное, но чрезвычайно серьезное влия­ние на стоимость недвижимой собственности, земельных участ­ков и строительства, на величину вкладов и занятость населения. Население, ученые и представители властей пока еще весьма смутно представляют себе все эти проблемы.