Какие вещества катализируют реакции. Катализ в химических реакциях

Скорости химических реакций могут резко увеличиваться в присутствии различных веществ, не являющихся реагентами и не входящих в состав продуктов реакции. Это замечательное явление получило название катализ (от греч. «katalysis» - разрушение). Вещество, при наличии которого в смеси увеличивается скорость реакции, называется катализатором. Его количество до и после реакции остается неизменным. Катализаторы не представляют собой какой-то особый класс веществ. В разных реакциях каталитическое действие могут проявить металлы, оксиды, кислоты, соли, комплексные соединения. Химические реакции в живых клетках протекают под контролем каталитических белков, называемых ферментами. Катализ следует рассматривать как истинно химический фактор увеличения скоростей химических реакций, так как катализатор непосредственно участвует в реакции. Катализ часто оказывается более мощным и менее рискованным средством ускорения реакции, чем повышение температуры. Это ярко проявляется на примере химических реакций в живых организмах. Реакции, например гидролиз белков, которые в лабораториях приходится проводить при длительном нагревании до температуры кипения, в процессе пищеварения протекают без нагревания при температуре тела.

Впервые явление катализа наблюдал французский химик Л. Ж. Тенар (1777-1857) в 1818 г. Он обнаружил, что оксиды некоторых металлов при внесении в раствор перекиси водорода вызывают ее разложение. Такой опыт легко воспроизвести, внеся кристаллы перманганата калия в 3%-ный раствор перекиси водорода. Соль КМп0 4 превращается в Мп0 2 , и из раствора под действием оксида быстро выделяется кислород:

Непосредственно действие катализатора на скорость реакции связано с понижением энергии активации. При обычной температуре понижение? а на 20 кДж/моль увеличивает константу скорости приблизительно в 3000 раз. Понижение Е Л может быть и значительно более сильным. Однако понижение энергии активации является внешним проявлением действия катализатора. Реакция характеризуется определенным значением E. v которое может измениться только при изменении самой реакции. Давая те же самые продукты, реакция при участии добавленного вещества идет по иному пути, через другие стадии и с другой энергией активации. Если на этом новом пути энергия активации оказывается ниже и реакция соответственно идет быстрее, то мы говорим, что эго вещество является катализатором.

Катализатор взаимодействует с одним из реагентов, образуя некоторое промежуточное соединение. На одной из последующих стадий реакции катализатор регенерируется - выходит из реакции в первоначальном виде. Реагенты, участвуя в каталитической реакции, продолжают взаимодействовать между собой и по медленному пути без участия катализатора. Поэтому каталитические реакции относятся к разновидности сложных реакций, называемых последовательно-параллельными. На рис. 11.8 показана зависимость константы скорости от концентрации катализатора. График зависимости не проходит через ноль, так как при отсутствии катализатора протекание реакции не прекращается.

Рис. 11.8.

наблюдаемая константа k выражается суммой k u + & к с(К)

Пример 11.5. При температуре -500 °С реакция окисления оксида серы(1У)

являющаяся одной из стадий промышленного получения серной кислоты, идет очень медленно. Дальнейшее повышение температуры неприемлемо, так как равновесие смещается влево (реакция экзотермическая) и выход продукта слишком сильно понижается. Но эта реакция ускоряется различными катализаторами, одним из которых может быть оксид азота(П). Сначала катализатор реагирует с кислородом:

а потом передает атом кислорода оксиду серы(1У):

Так образуется конечный продукт реакции и регенерируется катализатор. Для реакции открылась возможность течения по новому пути, на котором константы скорости значительно возросли:

На приведенной схеме показаны оба пути процесса окисления S0 2 . При отсутствии катализатора реакция идет только по медленному пути, а в присутствии катализатора- по обоим.

Различают два вида катализа - гомогенный и гетерогенный. В первом случае катализатор и реагенты образуют гомогенную систему в виде газовой смеси или раствора. Пример окисления оксида серы - это гомогенный катализ. Скорость гомогенной каталитической реакции зависит как от концентраций реагентов, так и от концентрации катализатора.

При гетерогенном катализе катализатор представляет собой твердое вещество в чистом виде или нанесенное на носитель. Например, платина в качестве катализатора может быть закреплена на асбесте, оксиде алюминия и т.д. Молекулы реагента адсорбируются (поглощаются) из газа или раствора на особых точках поверхности катализатора - активных центрах и при этом активируются. После химического превращения образовавшиеся молекулы продукта десорбируются с поверхности катализатора. На активных центрах повторяются акты превращения частиц. Кроме прочих факторов, скорость гетерогенной каталитической реакции зависит от площади поверхности каталитического материала.

Гетерогенный катализ особенно широко применяется в промышленности. Это объясняется легкостью осуществления непрерывного каталитического процесса при прохождении смеси реагентов через контактный аппарат с катализатором.

Катализаторы действуют избирательно, ускоряя вполне определенный вид реакций или даже отдельную реакцию и не влияя на другие. Это позволяет использовать катализаторы не только для ускорения реакций, но и для целенаправленного превращения исходных веществ в желаемые продукты. Метан и вода при 450 °С на катализаторе Fe 2 0 3 превращаются в углекислый газ и водород:

Те же вещества при 850 °С на поверхности никеля реагируют с образованием оксида углерода(П) и водорода:

Катализ относится к тем областям химии, в которых пока невозможно делать точные теоретические прогнозы. Все промышленные катализаторы для переработки нефтяных продуктов, природного газа, производства аммиака и многие другие разработаны на основе трудоемких и длительных экспериментальных исследований.

Умение управлять скоростями химических процессов имеет неоценимое значение в хозяйственной деятельности человека. При промышленном получении химических продуктов обычно необходимо увеличивать скорости технологических химических процессов, а при хранении продукции требуется уменьшать скорость разложения или воздействия кислорода, воды и т.д. Известны вещества, которые могут замедлять химические реакции. Они называются ингибиторами , или отрицательными катализаторами. Ингибиторы принципиально отличаются от настоящих катализаторов тем, что реагируют с активными частицами (свободными радикалами), которые по тем или иным причинам возникают в веществе или окружающей его среде и вызывают ценные реакции разложения и окисления. Ингибиторы постепенно расходуются, прекращая свое защитное действие. Наиболее важной разновидностью ингибиторов являются антиоксиданты, предохраняющие различные материалы от воздействия кислорода.

Следует напомнить и о том, чего нельзя добиться с помощью катализаторов. Они способны ускорять только самопроизвольные реакции. Если реакция самопроизвольно не идет, то катализатор не сможет ее ускорить. Например, никакой катализатор не может вызвать разложение воды на водород и кислород. Этот процесс можно осуществить только электролизом, затрачивая при этом электрическую работу.

Катализаторы могут активизировать и нежелательные процессы. В последние десятилетия наблюдается постепенное разрушение озонового слоя атмосферы на высоте 20-25 км. Предполагается, что в распаде озона участвуют некоторые вещества, например галогенированные углеводороды, выбрасываемые в атмосферу промышленными предприятиями, а также используемые в бытовых целях.

Одним из наиболее распространенных методов регулирования скоростей реакций является применение катализаторов.

Катализаторы – это вещества, которые активно участвуют в промежуточных стадиях реакции, изменяют скорость суммарного процесса, но в продуктах реакции обнаруживаются в неизменном состоянии.

Изменение скорости реакции в присутствии катализаторов называется катализом , а сами реакции – каталитическими реакциями .

Существует два подхода к классификации каталитических реакций.

1. По наличию границы раздела фаз различают:

гомогенный катализ , когда реагенты, катализатор и продукты реакции находятся в объеме одной фазы;

гетерогенный катализ , когда катализатор и реагирующие вещества с продуктами реакции находятся в различных фазах; часто катализатор образует твердую фазу, а реагенты и продукты находятся в жид-кой фазе или в газовой фазе.

2. По характеру изменения скорости реакции бывает:

положительный катализ , при котором катализатор увеличивает скорость реакции;

отрицательный катализ (ингибирование ), при котором катализатор (ингибитор ) замедляет скорость реакции;

автокатализ , когда роль катализатора играет продукт реакции; например, при гидролизе сложного эфира

СН 3 СООСН 3 + Н 2 О СН 3 СООН + СН 3 ОН

образующаяся в результате реакции уксусная кислоты отщепляет ион водорода, который начинает играть роль катализатора реакции гидролиза. Поэтому сначала медленно протекающая реакция со временем имеет все более увеличивающуюся скорость.

Для объяснения механизма каталитических реакций предложена теория промежуточных соединений . Согласно этой теории при положительном катализе катализатор (К ) с большой скоростью образует с одним из реагентов промежуточное соединение, которое также быстро взаимодействует со вторым реагеном:

А + В D (медленно)

1) А + К АК (быстро)

2) АК + В D + К (быстро)

Из рисунка 4а видно, что энергия активации некаталитического процесса намного больше, чем энергии активации первой и второй стадий каталитического превращения. Таким образом, при положительном катализе роль катализатора заключается в снижении энергии активации реакции.

Путь реакции а)

Путь реакции б)
Путь реакции а)

Рисунок 4 Энергетические диаграммы каталитической реакции (а) и

ингибированной реакции (б)

В реакциях ингибирования ингибитор (I ) с высокой скоростью образует прочное промежуточное соединение (АI ), которое очень медленно превращается в продукт реакции:

А + В D (медленно)

1) А + I AI (очень быстро)

2) AI + В D + I (очень медленно)

Из рисунка 4б видно, что первая стадия ингибирования по сравнению с неингибированным процессом имеет более низкую энергию активации и протекает очень быстро. В то же время энергия активации второй стадии ингибирования намного больше, чем неингибированной реакции. Таким образом, в ингибированных реакциях роль ингибитора заключается в увеличении энергии активации реакции.

ОСОБЕННОСТИ ФЕРМЕНТАТИВНОГО

КАТАЛИЗА

Ферменты (от лат. fermentum – закваска) – биологические катализаторы, присутствующие во всех биологических системах. Они осуществляют превращения веществ в организме, тем самым направляя и регулируя в нем обмен веществ. Ферменты находят широкое применение в пищевой и легкой промышленности. По химической природе ферменты представляют собой молекулу глобулярного белка.

Ферментативный катализ (биокатализ) – это ускорение химических реакций в биологических системах специальными белками – ферментами. В основе ферментативного катализа лежат те же химические закономерности, что и в основе обычного химического катализа, используемого в химическом производстве. Вместе с тем ферментативный катализ имеет свои особенности:

1. Более высокая активность по сравнению с химическими катализаторами (увеличение скорости в 10 10 – 10 13 раз). Это происходит потому, что ферментативные реакции на всех стадиях имеют очень низкие энергии активации (рисунок 5).

2. Большинство ферментов отличаются специфичностью действия , так что практически каждая реакция превращения реагирующего вещества (субстрата ) в продукт осуществляется специальным ферментом. Существуют две теории специфичности действия ферментов:

1) теория Фишера (теория «ключа–замка»): фермент и субстрат по пространственному строению должны подходить друг к другу как ключ к своему замку;

2) теория Кошланда (теория «руки и перчатки»): фермент и субстрат в отдельности могут не иметь соответствующие друг к другу пространственные формы, но при сближении конфигурации их изменяются таким образом, чтобы стало возможным строгое пространственное соответствие.

3. Ферментам свойственно явление инактивации – разрушение молекулы фермента после взаимодействия с определенным числом молекул субстрата. Чем выше активность фермента, тем быстрее он разрушается. Явление инактивации объясняет теория Кошланда. Действительно, чем активнее фермент, тем интенсивнее он взаимодействует с субстратом, при котором молекула фермента претерпевает значительную пространственную деформацию. Такая многократная деформация приводит к разрыву наиболее слабых химических связей, то есть к разрушению молекулы фермента.

4. Каждый фермент содержит молекулу белка. Однокомпонентные состоят только из молекулы белка, а двухкомпонентные – из молекулы белка и связанного с ней небелкового компонента (неорганического иона или молекулы органического соединения – чаще всего молекулы витамина или продукта его превращения) – кофактора . Молекулярный комплекс белка и кофактора называется холоферментом , который обладает максимальной каталитической активностью. В составе холофермента белковая часть называется ферон , а небелковая часть – агон . Белковый компонент, лишенный кофактора называется апоферментом , а кофактор, отделенный от белковой молекулы – коферментом . Отдельно от кофактора молекула белка обладает очень низкой активностью, а кофермент как катализатор вообще неактивен.

5. Действие большинства ферментов регулируется , то есть они способны переходить от состояния с низкой активностью к состоянию с высокой активностью и обратно. Механизм регуляции представляет сложную систему, с помощью которого организм контролирует все свои функции.

6. Ферменты очень чувствительны к влиянию внешних условий. Они проявляют активность в относительно узком диапазоне температур и значения рН среды.

Механизм ферментативных реакций аналогичен механизму реакций, катализируемых химическими катализаторами:

S + E ES P + E,

то есть сначала очень быстро образуется ферментсубстратный комплекс ES , который может обратно диссоциировать на субстрат S и фермент Е , но и равным образом медленно превращаться в продукт реакции P . При постоянстве концентрации фермента зависимость начальной скорости превращения субстрата v 0 от его начальной концентрации описывается кинетическим уравнением Михаэлиса -Ментен :

v 0 = ,

где K m и V max – кинетические параметры, отражающие механизм действия фермента.

Методика определения этих параметров основана на использовании уравнения Лайнуивера – Берка , которое получается путем преобразования уравнения Михаэлиса – Ментен:

= +

На рисунке 6 показана методика определения параметров K m и V max . V max - это максимальная начальная скорость реакции при данной концентрации фермента [E ] (рисунок 7). Молярная активность фермента (а Е) определяется соотношением:

которое показывает количество молекул субстрата, превращаемого одной молекулой фермента за единицу времени. Например, для реак-ции СО 2 + Н 2 О Н 2 СО 3 , катализируемой ферментом крови карбо-нат-дегидратазой а Е = 36∙10 6 моль СО 2 /(мин∙моль Е), то есть 1 молекула фермента за одну минуту катализирует превращение 36 млн. молекул СО 2 .

Рисунок 7 Зависимость начальной скорости ферментативной реакции от начальной концентрации субстрата

Параметр K m имеет смысл количества субстрата, необходимого для связывания половины имеющегося фермента в фермент-субстратный комплекс и достижения половины максимальной скорости (рисунок 7). Поэтому K m можно использовать для оценки специфичности действия определенного фермента по отношению к данному субстрату. Например, для реакции

моносахарид + АТФ сахарофосфат + АДФ ,

катализируемой ферментом гексокиназой, для глюкозы получено К m = 8∙10 –6 моль/л, а для аллозы К m = 8∙10 –3 моль/л. Следовательно, фермент более предпочтительно взаимодействует с глюкозой, так как для достижения одного и того же результата его требуется в 1000 раз меньше, чем аллозы.

4. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

При достижении химически равновесного состояния число молекул веществ перестает меняться и остается постоянным во времени при неизменных внешних условий. Для химического равновесия характерны следующие признаки:

1) равенство скоростей прямой и обратной реакций;

2) постоянство концентраций (парциальных давлений) компонентов при постоянстве внешних условий;

3) подвижность, то есть способность самопроизвольно восстанавливаться при небольших смещениях;

4) равновесие достигается как прямым, так и обратным течением реакции.

Рассмотрим энергетическую диаграмму химической реакции

А + В D (рисунок 8). Для этой реакции:

Рисунок 8 Энергетическая диаграмма обратимой химической реакции

Следовательно, при данной температуре прямая и обратная реакции имеют вполне определенные значения константы скорости. Поэтому в обратимых реакциях кинетические кривые имеют вид, приведенный на рисунке 9а . Из рисунка видно, что после достижения времени t р концентрации компонентов остаются неизменными.

Согласно закону действия масс

Из рисунка 9б видно, что после достижения времени установления равновесия t p достигается равенство скоростей . Тогда

где K c = - константа химического равновесия, определенная по равновесным концентрациям компонентов.


Рисунок 9 Кинетические кривые (а) и зависимости скорости прямой и обратной реакций от времени (б) для обратимой реакции

В общем случае для реакции

mA +nB qD +fE

константа равновесия определяется выражением

Таким образом, K c - это параметр, характерный для реакционной системы при данной температуре, определяющий соотношение концентраций компонентов в состоянии химического равновесия.

Если реакция протекает в газовой фазе, то вместо концентраций используют парциальные давления компонентов системы. Для приведенной выше равновесной реакции константу равновесия, определенную по парциальным давлениям компонентов в состоянии равновесия, находят как

Для идеальных газов р i =C i RT . Поэтому

где - - изменение количество молей компонентов в ходе реакции.

Значения K c и K p зависят от температуры и от природы компонентов реакционной систем.

Из уравнений Аррениуса для прямой и обратной реакции следует:

lnk пр = lnA пр и lnk обр = lnA обр

Так как , то

lnK р = ln

где ΔН пр – тепловой эффект прямой реакции.

Из полученного уравнения следует, что зависимость K p имеет вид прямой линии и для нее (рисунок 10), откуда следует .

Для определения ΔH пр аналитическим методом находят значение K p при двух разных температурах и проводят вычисления по формуле

ΔH пр


Рисунок 10 Определение теплового эффекта прямой эндотермической реакции (ΔН пр >0)

Последнее выражение называется интегральным уравнением изобары химической реакции . Она связывает константы равновесия при двух различных температурах и описывает равновесные системы, в которых при изменении температуры общее давление остается постоянным.

Если при изменении температуры объем системы сохраняется постоянным, как, например, при реакциях в растворах, то взаимосвязь параметров выражается через изохору химической реакции

ΔU пр .

Обсуждая направление протекания химических реакций с точки зрения химической термодинамики было отмечено, что система находится в состоянии химического равновесия при условии ∆G= 0. Исходя из этого положения получено уравнение изотермы химической реакции , которая позволяет определять знак ∆G и, соответственно, направление химической реакции при условии смешения компонентов реакционной системы в произвольных соотношениях:

ΔG = RT (ln – lnK p )

где p A и р В - произвольные парциальные давления компонентов, получаемые при их смешивании.

Аналогичное соотношение предложено и для системы, компоненты которой находятся в растворе.

Например, для реакции

mA+nB qD+fE,

равновесие которой устанавливается в жидкой фазе, уравнение изотермы химической реакции имеет следующий вид:

ΔG = RT (ln - lnK c )

где - мольные доли компонентов в растворе, который получен путем смешения произвольного количества веществ А, В, D и Е .

Смещение равновесия. Изменение температуры, концентрации, давления системы, находящейся в состоянии равновесия, выводит ее из равновесия. Но через определенное время в системе снова устанавливается новое равновесное состояние, параметры которой уже отличаются от первоначального состояния. Такой переход системы из одного равновесного состояния в другое равновесное состояние при изменении условий называется смещением равновесия. Его используют с целью увеличения выхода целевого продукта для тех систем, которые имеют небольшие значения констант равновесия. Кроме того, методом смещения равновесия можно подавлять параллельно протекающие нежелательные процессы.

Но при этом необходимо иметь в виду два фактора, которые не влияют на состояние равновесия. Во-первых, ввод катализатора в равноваесную систему не приводит к смещению равновесия. Катализатор одновременно понижает энергию активации прямой и обратной реакции, что приводит к повышению скорости обеих реакций в одинаковой степени. В результате применения катализатора состояние равновесия достигается за более короткий промежуток времени. Во-вторых, в гетерогенных равновесных системах концентрации и парциальные давления нерастворимых и нелетучих твердых веществ не входят в выражение константы равновесия. Например, для реакции FeO +CO Fe +CO 2 константу равновесия определяют как K p = .

Влияние температуры. Уравнения изохоры и изобары позволяют предсказывать направление смещения равновесия при изменении температуры. Например, если система в равновесии и прямая реакция экзотермическая (DН пр <0), то при повышении температуры (Т 2 >Т 1 ) должно соблюдаться неравенство K p ,2 K p ,1 . Это говорит о том, что в новом равновесном состоянии парциальное давление продуктов реакции будет меньше, то есть реакция смещается влево.

Повышение температуры смещает равновесие в сторону протекания эндотермической реакции, а понижение температуры – в сторону экзотермической реакции.

Таким образом, наибольший выход продуктов достигается:

Для экзотермических реакций при низких температурах;

Для эндотермических реакций при высоких температурах.

Влияние концентрации (парциального давления). Уравнение изотермы позволяет предсказывать направление смещения равновесия при изменении концентрации какого-либо компонента равновесной системы. Пусть система находится в состоянии равновесия. Тогда ΔG =0 и концентрации компонентов в уравнении изотермы соответствуют равновесным значениям и = K c . Если из системы вывести часть продуктов реакции, то возникает неравновесное состояние с соотношением параметров K c и, соответственно, ΔG< 0. Последнее неравенство является термодинамическим условием самопроизвольного протекания прямой реакции. Следовательно, новое равновесное состояние достигается путем превращения части исходных реагентов в продукты реакции – путем смещения равновесия вправо.

Увеличение концентрации (парциального давления) исходных реагентов смещает равновесие в сторону образования продуктов, а уменьшение их концентрации (парциального давления) – в сторону обратного превращения продуктов в исходные. Увеличение концентрации(парциального давления) продуктов смещает равновесие в сторону обратной реакции, а уменьшение их концентрации(парциального давления) – в сторону прямой реакции.

Поэтому для увеличения выхода продукта реакции необходимо увеличить концентрации (парциальные давления) исходных реагентов или же уменьшить концентрацию (парциальные давления) продуктов путем постепенного вывода их из реакционной системы.

Влияние общего давления системы . Пусть дана равновесная газофазная система mA nB , для которой n m , то есть прямая реакция идет с увеличением числа молекул.

Согласно закону Дальтона, p A = p∙y A и p B = p∙y B , где р - общее давление в системе; р А, р В – парциальные давления компонентов; y A , y B – мольные доли компонентов в газовой фазе. Тогда уравнение изотермы принимает следующий вид

Если при давлении р 1 система находится в равновесии, то

.

Повышение давления до р 2 выводит систему из равновесия. Так как (п-т ) 0, то возникает следующее соотношение параметров системы

и ΔG> 0.

Это термодинамическое условие протекания обратной реакции. Следовательно, при повышении давления новое равновесное состояние возникнет в результате обратного превращения продукта В в исходное соединение А , в результате чего уменьшается общее число молекул в системе.

Обобщая полученный результат можно сделать следующие выводы:

Повышение общего давления системы смещает равновесие в сторону той реакции, которая идет с уменьшением числа молекул;

Понижение общего давления системы приводит к смещению равновесия в сторону той реакции, которая протекает с увеличением числа молекул.

Обобщение закономерностей влияния всех факторов на направление смещения равновесия приводит к правилу, которое называется принципом Ле-Шателье :

если на равновесную систему оказать внешнее воздействие (изменить температуру, концентрацию или парциальные давления компонентов, общее давление), то она отреагирует таким образом, чтобы эффект этого воздействия был ослаблен.

ФОТОХИМИЧЕСКИЕ РЕАКЦИИ

Химические реакции, протекающие под воздействием светового излучения, называются фотохимическими реакциями . К наиболее важным фотохимическим реакциям относятся реакции образования озона из молекулярного кислорода под действием ультрафиолетовой радиации Солнца:

О 2 + h O

O + O 2 O 3 + O

Образующийся при этом озон О 3 поглощает ультрафиолетовые лучи в области 250-260 ммк, которые губительно действуют на живые организмы. К другой важной фотохимической реакции относится фотосинтез, в результате которого происходит поглощение растениями углекислого газа из атмосферы и выделение кислорода. Фотохимическое разложение бромида серебра лежит в основе фотографического процесса.

Энергия фотона (кванта излучения) (Е ) определяется соотношением

E = h ,

где h – постоянная Планка (h 6,626 10 Дж∙с); – частота излу-чения, с . Длина волны видимого света, инфракрасных и ультрафио-летовых лучей лежит в интервале от 100 нм до 1000 нм, а энергия их – от 120 кДж/моль до 1200 кДж/моль. Квант излучения поглощается одним единственным электроном атома в молекуле, вследствие чего этот электрон переходит на более высокий энергетический уровень. В результате возможны три различных последствия поглощения энергии в виде излучения:

1. Атом или молекула переходят в возбужденное состояние:

А + h A *

М + h М *

2. Диссоциация молекулы с образованием атомов или свободных радикалов :

АВ + h A + B

3. Образование простых или молекулярных ионов путем отрыва одного электрона:

А + h A + +

AB + h AB + +

Все эти процессы подчиняются следующим законам.

1. Фотохимические реакции могут быть вызваны только той частью падающего излучения, которая поглощается реагирующей системой (закон Гротгуса - Дрепера ).

2. Каждый поглощенный квант излучения вызывает превращение только одной молекулы (закон Эйнштейна - Штарка ).

3. Количество образующегося в результате фотохимической реакции продукта пропорционально интенсивности поглощенного излучения и времени облучения (закон Вант-Гоффа ).

Последний закон можно представить в математической форме:

m = k t,

где m – масса фотохимически превращенного вещества, г; - мощность поглощенного излучения, т.е. количество энергии, которое переносит световой поток через единицу площади в единицу времени, Дж/с; t – время облучения, с.; k – константа скорости реакции., г/Дж.

При опытной проверке 1-го и 2-го законов иногда наблюдается кажущееся несоответствие. Во-первых , число поглощенных квантов бывает не равно числу прореагировавших молекул вещества, т.е. как бы нарушается закон Эйнштейна-Штарка. Поэтому для характеристики фотохимических процессов введено понятие квантового выхода , который равен отношению числа действительно прореагировавших молекул к числу поглощенных квантов. Величина меняется в интервале от 10 -3 до 10 6 . При <1 поглощенная световая энергия частично расходуется на побочные процессы, такие как передача энергии на другие молекулы и самопроизвольное протекание обратного процесса. При >1 в системе протекает цепная реакция . В этом случае поглощенный квант излучения вызывает появление одной активной частицы, которая в дальнейшем создает цепь вторичных превращений.

Во-вторых , некоторые вещества не поглощают света в видимой или ультрафиолетовой области, тем не менее, они способны претерпевать превращение при облучении. Таким образом, как бы нарушается закон Гротгуса. Оказалось, что в этом случае квант излучения поглощается особыми веществами – фотосенсибилизаторами , которые передают поглощенную энергию другому веществу, которое и претерпевает в результате этого химическое превращение. Следовательно, нарушение закона Гротгуса является лишь кажущимся. Например, молекулярный водород не поглощает световое излучение с длиной волны 253,7 нм. Однако при облучении смесь паров ртути и водорода, наблюдается процесс диссоциации молекул водорода на атомы:

Hg + h Hg *

Hg * + H 2 Hg + H + H

Аналогичным фотосенсибилизированным процессом является фотосинтез – синтез углеводов из оксида углерода (IV) и воды, сопровождающийся выделением кислорода. В качестве сенсибилизатора данной фотохимической реакции выступает молекула хлорофилла. Причем хлорофилл b улавливает и собирает энергию светового излучения. После фотовозбуждения он передает избыточную энергию молекуле хлорофилла а , которая затем принимает непосредственное участие в процессе фотосинтеза.

Суммарный процесс фотосинтеза выражается реакцией:

6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6Н 2 О, G 0 = 2861,9 кДж/моль

Фотосинтез – сложный окислительно-восстановительный про-цесс, сочетающий фотохимические реакции с ферментативными. В механизме фотосинтеза различают две стадии – световую и темно-вую . Световая стадия включает собственно фотохимические реакции и сопряженные ими ферментативные, которые завершают окисление воды и образуют восстановленный никотинамид-адениндинуклеотид-фосфат (НАДФН 2 ) и аденозинтрифосфорную кислоту (АТФ ). В темновой стадии НАДФН 2 и АТФ восстанавливают молекулу СО 2 до СН 2 О и далее образуется моносахарид в цикле сопряженных ферментативных реакций, которые идут без участия кванта излучения.

СВОЙСТВА РАСТВОРОВ

ОБЩИЕ СВЕДЕНИЯ

Растворами называются гомогенные (однофазные) системы, состоящие из растворителей, раствореннных веществ и продуктов их взаимодействия, концентрации которых могут изменяться в широких пределах.

Они могут быть твердыми, жидкими и газообразными. Процессы в биологических объектах и технологические процессы в перерабатывающей промышленности сельского хозяйства протекают в водных растворах. Поэтому в дальнейшем ограничимся рассмотрением только водных растворов различных веществ.

При растворении происходит равномерное распределение молекул или ионов растворяемого вещества в объеме растворителя. Однако растворение нельзя рассматривать как чисто физический процесс диффузии одного вещества в другом. Об этом свидетельствует выделение значительного количества теплоты при растворении в воде некоторых веществ (H 2 SO 4 , NaOH и другие). Установлено, что между молекулами растворителя и молекулами или ионами растворенного вещества возможны химические взаимодействия, сопровождающиеся разрывом одних и образованием других химических связей. Это приводит к образованию продуктов взаимодействия растворителя с растворенным веществом, которые называются сольватами, а в водных растворах – гидратами . Сам процесс взаимодействия соответственно называется сольватацией или гидратацией.

В настоящее время растворы рассматриваются как физико -химические системы, занимающие по своим свойствам промежуточное положение между механическими смесями и химическими соединениями, и имеют характерные для них физико-химические закономерности.

Основной характеристикой всякого раствора является его концентрация . Как правило, растворителем выступает тот компонент раствора, который содержится в относительно большем количестве и определяет его фазовое состояние. Физико-химические свойства растворов зависят от их концентраций. Имеется множество таких зависимостей. Все они получены исходя из предположения, что раствор является идеальным . Идеальным называется такой раствор, в котором:

1) очень низка концентрация растворенного вещества – мольная доля менее 0,005;

2) растворенное вещество является нелетучим, то есть его молекулы не могут выйти из жидкой фазы в газовую фазу;

3) отсутствуют силы взаимодействия между частицами раствора, то есть теплота смешения равна нулю (Н р = 0) и не происходит изменение объема системы (V p = 0);

ускорение химических реакций под действием малых количеств веществ (катализаторов), которые сами в ходе реакции не изменяются. Каталитические процессы играют огромную роль в нашей жизни. Биологические катализаторы, называемые ферментами, участвуют в регуляции биохимических процессов. Без катализаторов не могли бы протекать многие промышленные процессы.

Важнейшее свойство катализаторов - селективность, т.е. способность увеличивать скорость лишь определенных химических реакций из многих возможных. Это позволяет осуществлять реакции, протекающие в обычных условиях слишком медленно, чтобы им можно было найти практическое применение, и обеспечивает образование нужных продуктов.

Применение катализаторов способствовало бурному развитию химической промышленности. Они широко используются при переработке нефти, получении различных продуктов, создании новых материалов (например, пластмасс), нередко более дешевых, чем применявшиеся прежде. Примерно 90% объема современного химического производства основано на каталитических процессах. Особую роль играют каталитические процессы в охране окружающей среды.

В 1835 шведский химик Й.Берцелиус установил, что в присутствии определенных веществ скорость некоторых химических реакций существенно возрастает. Для таких веществ он ввел термин «катализатор» (от греч.

katalysis - расслабление). Как считал Берцелиус, катализаторы обладают особой способностью ослаблять связи между атомами в молекулах, участвующих в реакции, облегчая таким образом их взаимодействие. Большой вклад в развитие представлений о работе катализаторов внес немецкий физикохимик В.Оствальд, который в 1880 дал определение катализатора как вещества, которое изменяет скорость реакции.

Согласно современным представлениям, катализатор образует комплекс с реагирующими молекулами, стабилизируемый химическими связями. После перегруппировки этот комплекс диссоциирует с высвобождением продуктов и катализатора. Для мономолекулярной реакции превращения молекулы

X в Y весь этот процесс можно представить в виде X + Кат. ® X -Кат. ® Y -Кат. ® Y + Кат. Высвободившийся катализатор вновь связывается с X , и весь цикл многократно повторяется, обеспечивая образование больших количеств продукта - вещества Y . Многие вещества при обычных условиях не вступают в химическую реакцию друг с другом. Так, водород и оксид углерода при комнатной температуре не взаимодействуют между собой, поскольку связь между атомами в молекуле H 2 достаточно прочная и не разрывается при атаке молекулой CO . Катализатор сближает молекулы H 2 и CO , образуя с ними связи. После перегруппировки комплекс катализатор - реагенты диссоциирует с образованием продукта, содержащего атомы C , H и O . Нередко при взаимодействии одних и тех же веществ образуются разные продукты. Катализатор может направить процесс по пути, наиболее благоприятному для образования определенного продукта. Рассмотрим реакцию между CO и H 2 . В присутствии медьсодержащего катализатора практически единственным продуктом реакции является метанол: Вначале молекулы СО и Н 2 адсорбируются на поверхности катализатора. Затем молекулы СО образуют с катализатором химические связи (происходит хемосорбция), оставаясь в недиссоциированной форме. Молекулы водорода также хемосорбируются на поверхности катализатора, но при этом диссоциируют. В результате перегруппировки образуется переходный комплекс Н-Кат.- CH 2 OH . После присоединения атома H комплекс распадается с высвобождением CH 3 OH и катализатора. В присутствии никелевого катализатора как СО, так и Н 2 хемосорбируются на поверхности в диссоциированной форме, и образуется комплекс Кат.-СН 3 . Конечными продуктами реакции являются СН 4 и Н 2 О:
Большинство каталитических реакций проводят при определенных давлении и температуре, пропуская реакционную смесь, находящуюся в газообразном или жидком состоянии, через реактор, заполненный частицами катализатора. Для описания условий проведения реакции и характеристики продуктов используются следующие понятия. Объемная скорость - объем газа или жидкости, проходящий через единицу объема катализатора в единицу времени. Каталитическая активность - количество реагентов, превращенных катализатором в продукты в единицу времени. Конверсия - доля вещества, превращенного в данной реакции. Селективность - отношение количества определенного продукта к суммарному количеству продуктов (обычно выражается в процентах). Выход - отношение количества данного продукта к количеству исходного материала (обычно выражается в процентах). Производительность - количество продуктов реакции, образующихся в единице объема в единицу времени. ТИПЫ КАТАЛИЗАТОРОВ Катализаторы классифицируют исходя из природы реакции, которую они ускоряют, их химического состава или физических свойств. Каталитическими свойствами обладают в той или иной степени практически все химические элементы и вещества - сами по себе или, чаще, в различных сочетаниях. По своим физическим свойствам катализаторы делятся на гомогенные и гетерогенные. Гетерогенные катализаторы - это твердые вещества, гомогенные диспергированы в той же газовой или жидкой среде, что и реагирующие вещества.

Многие гетерогенные катализаторы содержат металлы. Некоторые металлы, особенно относящиеся к

VIII группе периодической системы элементов, обладают каталитической активностью сами по себе; типичный пример - платина. Но большинство металлов проявляют каталитические свойства, находясь в составе соединений; пример - глинозем (оксид алюминия Al 2 O 3 ). Необычным свойством многих гетерогенных катализаторов является большая площадь их поверхности. Они пронизаны многочисленными порами, суммарная площадь которых иногда достигает 500 м 2 на 1 г катализатора. Во многих случаях оксиды с большой площадью поверхности служат подложкой, на которой в виде небольших кластеров осаждаются частички металлического катализатора. Это обеспечивает эффективное взаимодействие реагентов в газовой или жидкой фазе с каталитически активным металлом. Особый класс гетерогенных катализаторов составляют цеолиты - кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия). Хотя многие гетерогенные катализаторы обладают большой площадью поверхности, обычно они имеют лишь небольшое число активных центров, на долю которых приходится малая часть суммарной поверхности. Катализаторы могут утрачивать свою активность в присутствии небольших количеств химических соединений, называемых каталитическими ядами. Эти вещества связываются с активными центрами, блокируя их. Определение структуры активных центров является предметом интенсивных исследований.

Гомогенные катализаторы имеют различную химическую природу - кислоты (Н

2 SO 4 или Н 3 РО 4 ), основания (NaOH ), органические амины, металлы, чаще всего переходные (Fe или Rh ), в форме солей, металлоорганических соединений или карбонилов. К катализаторам относятся также ферменты - белковые молекулы, регулирующие биохимические реакции. Активный центр некоторых ферментов содержит атом металла (Zn, Cu, Fe или Mo ) . Металлсодержащие ферменты катализируют реакции с участием малых молекул (О 2 , CO 2 или N 2 ). Ферменты обладают очень высокой активностью и селективностью, но работают только при определенных условиях, таких, в которых протекают реакции в живых организмах. В промышленности часто используют т.н. иммобилизованные ферменты. КАК РАБОТАЮТ КАТАЛИЗАТОРЫ Энергетика . Любая химическая реакция может протекать лишь при условии, что реагенты преодолеют энергетический барьер, а для этого они должны приобрести определенную энергию. Как мы уже говорили, каталитическая реакция X ® Y состоит из ряда последовательных стадий. Для протекания каждой из них необходима энергия E , называемая энергией активации. Изменение энергии вдоль координаты реакции представлено на рис. 1.

Рассмотрим сначала некаталитический, «тепловой» путь. Чтобы реакция смогла осуществиться, потенциальная энергия молекул

X должна превысить энергетический барьер E т . Каталитическая же реакция состоит из трех стадий. Первая - образование комплекса Х-Кат. (хемосорбция), энергия активации которой равна Е адс . Вторая стадия - перегруппировка Х-Кат. ® Y -Кат. с энергией активации Е кат , и наконец, третья - десорбция с энергией активации Е дес ; Е адс , Е кат и Е дес много меньше Е т . Поскольку скорость реакции экспоненциально зависит от энергии активации, каталитическая реакция протекает значительно быстрее тепловой при данной температуре.

Катализатор можно уподобить инструктору-проводнику, который ведет альпинистов (реагирующие молекулы) через горный хребет. Он проводит одну группу через перевал и затем возвращается за следующей. Путь через перевал лежит значительно ниже того, который лежит через вершину (тепловой канал реакции), и группа совершает переход быстрее, чем без проводника (катализатора). Возможно даже, что самостоятельно группа вообще не смогла бы преодолеть хребет.

Теории катализа . Для объяснения механизма каталитических реакций были предложены три группы теорий: геометрические, электронные и химическая. В геометрических теориях основное внимание обращено на соответствие между геометрической конфигурацией атомов активных центров катализатора и атомов той части реагирующих молекул, которая ответственна за связывание с катализатором. Электронные теории исходят из представления, что хемосорбция обусловливается электронным взаимодействием, связанным с переносом заряда, т.е. эти теории связывают каталитическую активность с электронными свойствами катализатора. Химическая теория рассматривает катализатор как химическое соединение с характерными свойствами, которое образует химические связи с реагентами, в результате чего формируется нестабильный переходный комплекс. После распада комплекса с высвобождением продуктов катализатор возвращается в исходное состояние. Последняя теория считается сейчас наиболее адекватной.

На молекулярном уровне каталитическую газофазную реакцию можно представить следующим образом. Одна реагирующая молекула связывается с активным центром катализатора, а другая взаимодействует с ней, находясь непосредственно в газовой фазе. Возможен и альтернативный механизм: реагирующие молекулы адсорбируются на соседних активных центрах катализатора, а потом взаимодействуют друг с другом. По-видимому, именно таким образом протекает большинство каталитических реакций.

Другая концепция предполагает, что существует связь между пространственным расположением атомов на поверхности катализатора и его каталитической активностью. Скорость одних каталитических процессов, в том числе многих реакций гидрирования, не зависит от взаимного расположения каталитически активных атомов на поверхности; скорость других, напротив, существенно изменяется при изменении пространственной конфигурации поверхностных атомов. В качестве примера можно привести изомеризацию неопентана в изопентан и одновременный крекинг последнего до изобутана и метана на поверхности катализатора

Pt-Al 2 O 3 . ПРИМЕНЕНИЕ КАТАЛИЗА В ПРОМЫШЛЕННОСТИ Тот бурный промышленный рост, который мы сейчас переживаем, был бы невозможен без развития новых химических технологий. В значительной мере этот прогресс определяется широким применением катализаторов, с помощью которых низкосортное сырье превращается в высокоценные продукты. Образно говоря, катализатор - это философский камень современного алхимика, только он превращает не свинец в золото, а сырье в лекарства, пластмассы, химические реактивы, топливо, удобрения и другие полезные продукты.

Пожалуй, самый первый каталитический процесс, который человек научился использовать, - это брожение. Рецепты приготовления алкогольных напитков были известны шумерам еще за 3500 до н.э.

См . ВИНО; ПИВО.

Значительной вехой в практическом применении катализа стало производство маргарина каталитическим гидрированием растительного масла. Впервые эта реакция в промышленном масштабе была осуществлена примерно в 1900. А начиная с 1920-х годов один за другим были разработаны каталитические способы получения новых органических материалов, прежде всего пластмасс. Ключевым моментом стало каталитическое получение олефинов, нитрилов, эфиров, кислот и т.д. - «кирпичиков» для химического «строительства» пластмасс.

Третья волна промышленного использования каталитических процессов приходится на 1930-е годы и связана с переработкой нефти. По своему объему это производство вскоре оставило далеко позади все другие. Переработка нефти состоит из нескольких каталитических процессов: крекинга, риформинга, гидросульфирования, гидрокрекинга, изомеризации, полимеризации и алкилирования.

И наконец, четвертая волна в использовании катализа связана с охраной окружающей среды. Наиболее известное достижение в этой области - создание каталитического нейтрализатора выхлопных газов автомобилей. Каталитические нейтрализаторы, которые устанавливают на автомобили с 1975, сыграли большую роль в улучшении качества воздуха и сберегли таким образом много жизней.

За работы в области катализа и смежных областей было присуждено около десятка Нобелевских премий.

О практической значимости каталитических процессов свидетельствует тот факт, что на долю азота, входящего в состав полученных промышленным путем азотсодержащих соединений, приходится около половины всего азота, входящего в состав пищевых продуктов. Количество соединений азота, образующихся естественным путем, ограничено, так что производство пищевого белка зависит от количества азота, вносимого в почву с удобрениями. Невозможно было бы прокормить и половину человечества без синтетического аммиака, который получают почти исключительно с помощью каталитического процесса Габера - Боша.

Область применения катализаторов постоянно расширяется. Важно и то, что катализ позволяет значительно повысить эффективность ранее разработанных технологий. В качестве примера можно привести усовершенствование каталитического крекинга благодаря использованию цеолитов.

Гидрирование . Большое число каталитических реакций связано с активацией атома водорода и какой-либо другой молекулы, приводящей к их химическому взаимодействию. Этот процесс называется гидрированием и лежит в основе многих этапов переработки нефти и получения жидкого топлива из угля (процесс Бергиуса).

Производство авиационного бензина и моторного топлива из угля было развито в Германии во время Второй мировой войны, поскольку в этой стране нет нефтяных месторождений. Процесс Бергиуса заключается в непосредственном присоединении водорода к углю. Уголь нагревают под давлением в присутствии водорода и получают жидкий продукт, который затем перерабатывают в авиационный бензин и моторное топливо. В качестве катализатора используют оксид железа, а также катализаторы на основе олова и молибдена. Во время войны на 12 заводах Германии с помощью процесса Бергиуса получали примерно 1400 т жидкого топлива в сутки.

Другой процесс, Фишера - Тропша, состоит из двух стадий. Вначале уголь газифицируют, т.е. проводят реакцию его с водяным паром и кислородом и получают смесь водорода и оксидов углерода. Эту смесь превращают в жидкое топливо с помощью катализаторов, содержащих железо или кобальт. С окончанием войны производство синтетического топлива из угля в Германии было прекращено.

В результате повышения цен на нефть, последовавшего за нефтяным эмбарго в 1973-1974, были предприняты энергичные усилия по разработке экономически выгодного способа получения бензина из угля. Так, прямое ожижение угля можно проводить более эффективно, используя двухстадийный процесс, в котором сначала уголь контактирует с алюмокобальтомолибденовым катализатором при относительно низкой, а затем при более высокой температуре. Стоимость такого синтетического бензина выше, чем получаемого из нефти.

Аммиак . Один из самых простых с химической точки зрения процессов гидрирования - синтез аммиака из водорода и азота. Азот весьма инертное вещество. Для разрыва связи N - N в его молекуле необходима энергия порядка 200 ккал / моль. Однако азот связывается с поверхностью железного катализатора в атомарном состоянии, и для этого нужно всего 20 ккал / моль. Водород связывается с железом еще более охотно. Синтез аммиака протекает следующим образом:
Этот пример иллюстрирует способность катализатора ускорять в равной степени как прямую, так и обратную реакцию, т.е. тот факт, что катализатор не изменяет положение равновесия химической реакции. Гидрирование растительного масла. Одна из важнейших в практическом отношении реакций гидрирования - неполное гидрирование растительных масел до маргарина, кулинарного жира и других пищевых продуктов. Растительные масла получают из соевых бобов, семян хлопчатника и других культур. В их состав входят эфиры, а именно триглицериды жирных кислот с разной степенью ненасыщенности. Олеиновая кислота СН 3 (СН 2 ) 7 СН=СН(СН 2 ) 7 СООН имеет одну двойную связь С=С, линолевая кислота - две и линоленовая - три. Присоединение водорода с разрывом этой связи предотвращает окисление масел (прогоркание). При этом повышается их температура плавления. Твердость большинства получаемых продуктов зависит от степени гидрирования. Гидрирование проводят в присутствии мелкодисперсного порошка никеля, нанесенного на подложку, или никелевого катализатора Ренея в атмосфере водорода высокой степени очистки. Дегидрирование . Дегидрирование - это тоже важная в промышленном отношении каталитическая реакция, хотя масштабы ее применения несравнимо меньше. С ее помощью получают, например, стирол - важный мономер. Для этого дегидрируют этилбензол в присутствии катализатора, содержащего оксид железа; протеканию реакции способствуют также калий и какой-нибудь структурный стабилизатор. В промышленных масштабах осуществляют дегидрирование пропана, бутана и других алканов. Дегидрированием бутана в присутствии алюмохромового катализатора получают бутены и бутадиен. Кислотный катализ . Каталитическая активность большого класса катализаторов обусловливается их кислотными свойствами. Согласно И.Брёнстеду и Т.Лоури, кислота - это соединение, способное отдавать протон. Сильные кислоты легко отдают свои протоны основаниям. Концепция кислотности получила дальнейшее развитие в работах Г.Льюиса, который дал определение кислоты как вещества, способного принимать электронную пару от вещества-донора с образованием ковалентной связи за счет обобществления этой электронной пары. Эти идеи вместе с представлениями о реакциях с образованием карбений-ионов помогли понять механизм разнообразных каталитических реакций, особенно тех, в которых участвуют углеводороды.

Силу кислоты можно определить с помощью набора оснований, изменяющих цвет при присоединении протона. Оказывается, некоторые промышленно важные катализаторы ведут себя как очень сильные кислоты. К ним относится катализатор процесса Фриделя - Крафтса, такой, как

HCl-AlCl 2 O 3 (или HAlCl 4 ), и алюмосиликаты. Сила кислоты - это очень важная характеристика, поскольку от нее зависит скорость протонирования - ключевого этапа процесса кислотного катализа.

Активность таких катализаторов, как алюмосиликаты, применяющихся при крекинге нефти, определяется присутствием на их поверхности кислот Брёнстеда и Льюиса. Их структура аналогична структуре кремнезема (диоксида кремния), в котором часть атомов

Si 4+ замещена атомами Al 3+ . Лишний отрицательный заряд, возникающий при этом, может быть нейтрализован соответствующими катионами. Если катионами являются протоны, то алюмосиликат ведет себя как кислота Брёнстеда:
Активность кислотных катализаторов обусловливается их способностью реагировать с углеводородами с образованием в качестве промежуточного продукта карбений-иона. Алкилкарбений-ионы содержат положительно заряженный углеродный атом, связанный с тремя алкильными группами и / или атомами водорода. Они играют важную роль как промежуточные продукты, образующиеся во многих реакциях с участием органических соединений. Механизм действия кислотных катализаторов можно проиллюстрировать на примере реакции изомеризации н -бутана в изобутан в присутствии HCl - AlCl 3 или Pt - Cl - Al 2 O 3 . Сначала малое количество олефина С 4 Н 8 присоединяет положительно заряженный ион водорода кислотного катализатора с образование м третичного карбений-иона . Затем отрицательно заряженный гидрид-ион Н - отщепляется от н -бутана с образованием изобутана и вторичного бутилкарб е ни й- иона. Последний в результате перегруппировки превращается в третичный карб е ни й- ион. Эта цепочка может продолжаться с отщеплением гидрид-иона от следующей молекулы н -бутана и т.д.:
Существенн о, что третичные карбений-ионы более стабильны, чем первичные или вторичные. Вследствие этого на поверхности катализатора присутствуют в основном именно они, а потому основным продуктом изомеризации бутана является изобутан.

Кислотные катализаторы широко применяются при переработке нефти - крекинге, алкилировании, полимеризации и изомеризации углеводородов

(см. также ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ) . Установлен механизм действия карбений-ионов, играющих роль катализаторов в этих процессах. При этом они участвуют в целом ряде реакций, включая образование малых молекул путем расщепления больших, соединение молекул (олефина с олефином или олефина с изопарафином), структурную перегруппировку путем изомеризации, образование парафинов и ароматических углеводородов путем переноса водорода.

Одно из последних применений кислотного катализа в промышленности - получение этилированных топлив присоединением спиртов к изобутилену или изоамилену. Добавление кислородсодержащих соединений в бензин уменьшает концентрацию оксида углерода в выхлопных газах. Метил-

трет -бутиловый эфир (МТБЭ) с октановым числом смешения 109 тоже позволяет получить высокооктановое топливо, необходимое для работы автомобильного двигателя с высокой степенью сжатия, не прибегая к введению в бензин тетраэтилсвинца. Организовано также производство топлив с октановыми числами 102 и 111. Основной катализ . Активность катализаторов обусловливается их основными свойствами. Давним и хорошо известным примером таких катализаторов является гидроксид натрия, применяющийся для гидролиза или омыления жиров при получении мыла, а один из последних примеров - катализаторы, используемые при производстве полиуретановых пластиков и пенопластов. Уретан образуется при взаимодействии спирта с изоцианатом, а ускоряется эта реакция в присутствии осн вных аминов. В ходе реакции происходит присоединение основания к атому углерода в молекуле изоцианата, в результате чего на атоме азота появляется отрицательный заряд и его активность по отношению к спирту повышается. Особенно эффективным катализатором является триэтилендиамин. Полиуретановые пластики получают при взаимодействии диизоцианатов с полиолами (полиспиртами). Когда изоцианат реагирует с водой, ранее образовавшийся уретан разлагается с выделением CO 2 . При взаимодействии смеси полиспиртов и воды с диизоцианатами образующийся пенополиуретан вспенивается газообразным CO 2 . Катализаторы двойного действия . Эти катализаторы ускоряют реакции двух типов и дают лучшие результаты, чем при пропускании реагентов последовательно через два реактора, каждый из которых содержит только один тип катализатора. Это связано с тем, что активные центры катализатора двойного действия находятся очень близко друг к другу, и промежуточный продукт, образующийся на одном из них, тут же превращается в конечный продукт на другом.

Хороший результат дает объединение катализатора, активирующего водород, с катализатором, способствующим изомеризации углеводородов. Активацию водорода осуществляют некоторые металлы, а изомеризацию углеводородов - кислоты. Эффективным катализатором двойного действия, который применяется при переработке нефти для превращения нафты в бензин, является мелкодисперсная платина, нанесенная на кислый глинозем. Конверсия таких составляющих нафты, как метилциклопентан (МЦП), в бензол повышает октановое число бензина. Сначала МЦП дегидрируется на платиновой части катализатора в олефин с тем же углеродным остовом; затем олефин переходит на кислотную часть катализатора, где изомеризуется до циклогексена. Последний переходит на платиновую часть и дегидрируется до бензола и водорода.

Катализаторы двойного действия существенно ускоряют риформинг нефти. Их используют для изомеризации нормальных парафинов в изопарафины. Последние, кипящие при тех же температурах, что и бензиновые фракции, ценны тем, что обладают более высоким октановым числом по сравнению с неразветвленными углеводородами. Кроме того, превращение

н -бутана в изобутан сопровождается дегидрированием, способствуя получению МТБЭ. Стереоспецифическая полимеризация . Важной вехой в истории катализа явилось о ткрытие каталитической полимеризации a -олефинов с образованием стереорегулярны х полимер ов . К атализаторы стереоспецифической полимеризации были открыты К.Циглером, когда он пытался объяснить необычные свойства полученных им полимеров. Другой химик, Дж.Натта, предположил, что уникальность полимеров Циглера определяется их стереорегулярностью. Эксперименты по дифракции рентгеновских лучей показали, что полимеры, полученные из пропилена в присутствии катализаторов Циглера, высококристалличны и действительно имеют стереорегулярную структуру. Для описания таких упорядоченных структур Натта ввел термины « изотактический » и «синдиотактический». В том случае, когда упорядоченность отсутствует, используется термин «атактический»: Стереоспецифическая реакция протекает на поверхности твердых катализаторов, содержащих переходные металлы групп IVA - VIII (такие, как Ti, V, Cr, Zr ), находящиеся в неполностью окисленном состоянии, и какое-либо соединение, содержащее углерод или водород, который связан с металлом из групп I - III . Классическим примером такого катализатора является осадок, образующийся при взаимодействии TiCl 4 и Al(C 2 H 5 ) 3 в гептане, где титан восстан овлен до трехвалентного состояния. Эта исключительно активная система катализирует полимеризацию пропилена при обычных температуре и давлении. Каталитическое окисление . Применение катализаторов для управления химизмом процессов окисления имеет большое научное и практическое значение. В некоторых случаях окисление должно быть полным, например при нейтрализации СО и углеводородных загрязнений в выхлопных газах автомобилей. Однако чаще нужно, чтобы окисление было неполным, например во многих широко применяемых в промышленности процессах превращения углеводородов в ценные промежуточные продукты, содержащие такие функциональные группы, как -СНО, -СООН, -С-СО, -СN. При этом применяются как гомогенные, так и гетерогенные катализаторы. Примером гомогенного катализатора является комплекс переходного металла, который используется для окисления пара -ксилола до терефталевой кислоты, эфиры которой служат основой производства полиэфирных волокон. Катализаторы гетерогенного окисления . Эти катализаторы обычно являются сложными твердыми оксидами. Каталитическое окисление проходит в два этапа. Сначала кислород оксида захватывается адсорбированной на поверхности оксида молекулой углеводорода. Углеводород при этом окисляется, а оксид восстанавливается. Восстановленный оксид взаимодействует с кислородом и возвращается в исходное состояние. Используя ванадиевый катализатор, неполным окислением нафталина или бутана получают фталевый ангидрид. Получение этилена путем дегидродимеризации метана. Синтез этилена посредством дегидродимеризации позволяет превращать природный газ в более легко транспортируемые углеводороды. Реакцию 2CH 4 + 2O 2 ® C 2 H 4 + 2H 2 O проводят при 850 ° С с использованием различных катализаторов; наилучшие результаты получены с катализатором Li - MgO . Предположительно реакция протекает через образование метильного радикала путем отщепления атома водорода от молекулы метана. Отщепление осуществляется неполностью восстановленным кислородом, например О 2 2- . Метильные радикалы в газовой фазе рекомбинируют с образованием молекулы этана и в ходе последующего дегидрирования превращаются в этилен. Еще один пример неполного окисления - превращение метанола в формальдегид в присутствии серебряного или железомолибденового катализатора. Цеолиты . Цеолиты составляют особый класс гетерогенных катализаторов. Это алюмосиликаты с упорядоченной сотовой структурой, размер ячеек которой сравним с размером многих органических молекул. Их называют еще молекулярными ситами. Наибольший интерес представляют цеолиты, поры которых образованы кольцами, состоящими из 8-12 ионов кислорода (рис. 2). Иногда поры перекрываются, как у цеолита ZSМ-5 (рис. 3), который используется для высокоспецифичного превращения метанола в углеводороды бензиновой фракции. Бензин содержит в значительных количествах ароматические углеводороды и поэтому имеет высокое октановое число. В Новой Зеландии, например, с помощью этой технологии получают треть всего потребляемого бензина. Метанол же получают из импортируемого метана. Катализаторы, составляющие группу Y-цеолитов, существенно повышают эффективность каталитического крекинга благодаря в первую очередь своим необычным кислотным свойствам. Замена алюмосиликатов цеолитами позволяет увеличить выход бензина более чем на 20%.

Кроме того, цеолиты обладают селективностью в отношении размера реагирующих молекул. Их селективность обусловлена размером пор, через которые могут проходить молекулы лишь определенных размеров и формы. Это касается как исходных веществ, так и продуктов реакции. Например, вследствие стерических ограничений

пара -ксилол образуется легче, чем более объемные орто - и мета -изомеры. Последние оказываются «запертыми» в порах цеолита (рис. 4).

Применение цеолитов произвело настоящую революцию в некоторых промышленных технологиях - депарафинизации газойля и машинного масла, получении химических полупродуктов для производства пластмасс алкилированием ароматических соединений, изомеризации ксилола, диспропорционировании толуола и каталитическом крекинге нефти. Особенно эффективен здесь цеолит

ZSM-5 . Катализаторы и охрана окружающей среды . Применение катализаторов для уменьшения загрязнения воздуха началось в конце 19 40-х годов . В 1952 А.Хаген-Смит установил, что углеводороды и оксиды азота, входящие в состав выхлопных газов, реагируют на свету с образованием оксидантов (в частности, озона), которые оказывают раздражающее действие на глаза и дают другие нежелательные эффекты. Примерно в это же время Ю.Хоудри разработал способ каталитической очистки выхлопных газов путем окисления CO и углеводородов до CO 2 и Н 2 О. В 1970 была сформулирована Декларация о чистом воздухе (уточненная в 1977, расширенная в 1990), согласно которой все новые автомобили, начиная с моделей 1975, должны снабжаться каталитическими нейтрализаторами выхлопных газов. Были установлены нормы для состава выхлопных газов. Поскольку соединения свинца, добавляемые в бензин, отравляют катализаторы, принята программа поэтапного отказа от них. Обращалось внимание и на необходимость снижения содержания оксидов азота.

Специально для автомобильных нейтрализаторов созданы катализаторы, в которых активные компоненты нанесены на керамическую подложку с сотовой структурой, через ячейки которой проходят выхлопные газы. Подложку покрывают тонким слоем оксида металла, например

Al 2 O 3 , на который наносят катализатор - платину, палладий или родий. Содержание оксидов азота, образующихся при сжигании природных топлив на теплоэлектростанциях, можно уменьшить добавлением в дымовые газы малых количеств аммиака и пропусканием их через титанованадиевый катализатор. Ферменты . Ферменты - это природные катализаторы, регулирующие биохимические процессы в живой клетке. Они участвуют в процессах энергообмена, расщеплении питательных веществ, реакциях биосинтеза. Без них не могут протекать многие сложные органические реакции. Ферменты функционируют при обычных температуре и давлении, обладают очень высокой селективностью и способны увеличивать скорость реакций на восемь порядков. Несмотря на эти преимущества, лишь ок. 20 из 15 000 известных ферментов применяются в широких масштабах.

Человек тысячелетиями использовал ферменты при выпечке хлеба, получении алкогольных напитков, сыра и уксуса. Сейчас ферменты применяются и в промышленности: при переработке сахара, получении синтетических антибиотиков, аминокислот и белков. Протеолитические ферменты, ускоряющие процессы гидролиза, добавляют в детергенты.

С помощью бактерий

Clostridium acetobutylicum Х.Вейцман осуществил ферментативное превращение крахмала в ацетон и бутиловый спирт. Этот способ получения ацетона широко использовался в Англии во время Первой мировой войны, а во время Второй мировой войны с его помощью в СССР изготавливали бутадиеновый каучук.

Исключительно большую роль сыграло применение ферментов, продуцируемых микроорганизмами, для синтеза пенициллина, а также стрептомицина и витамина

B 12 . Этиловый спирт, получаемый ферментативным путем, широко используют в качестве автомобильного топлива. В Бразилии более трети из примерно 10 млн. автомобилей работают на 96%-ном этиловом спирте, получаемом из сахарного тростника, а остальные - на смеси бензина и этилового спирта (20%). Хорошо отработана технология производства топлива, представляющего собой смесь бензина и спирта, в США. В 1987 из зерен кукурузы было получено ок. 4 млрд. л спирта, из них примерно 3,2 млрд. л было использовано в качестве топлива. Разнообразное применение находят и т.н. иммобилизованные ферменты. Эти ферменты связаны с твердым носителем, например силикагелем, над которым пропускают реагенты. Преимущество этого метода состоит в том, что он обеспечивает эффективное контактирование субстратов с ферментом, разделение продуктов и сохранение фермента. Один из примеров промышленного использования иммобилизованных ферментов - изомеризация D -глюкозы во фруктозу. ТЕХНОЛОГИЧЕСКИЕ АСПЕКТЫ Современные технологии невозможно представить без применения катализаторов. Каталитические реакции могут протекать при температурах до 650 ° С и давлениях 100 атм и более. Это заставляет по-новому решать проблемы, связанные с контактированием между газообразными и твердыми веществами и с переносом частиц катализатора. Чтобы процесс был эффективным, при его моделировании необходимо учитывать кинетические, термодинамические и гидродинамические аспекты. Здесь широко используются компьютерное моделирование, а также новые приборы и методы контроля за технологическими процессами.

В 1960 был достигнут значительный прогресс в производстве аммиака. Применение более активного катализатора позволило понизить температуру получения водорода при разложении водяного пара, благодаря чему удалось понизить давление и, следовательно, уменьшить производственные затраты, например за счет применения более дешевых центробежных компрессоров. В результате стоимость аммиака упала более чем вдвое, произошло колоссальное увеличение его производства, а в связи с этим - увеличение производства пищевых продуктов, поскольку аммиак - ценное удобрение.

Методы . Исследования в области катализа проводят с использованием как традиционных, так и специальных методов. Применяются радиоактивные метки, рентгеновская, инфракрасная и рамановская (КР) спектроскопия, электронно-микроскопические методы; проводятся кинетические измерения, изучается влияние способов получения катализаторов на их активность. Большое значение имеет определение площади поверхности катализатора по методу Брунауэра - Эммета - Теллера (метод БЭТ), основанному на измерении физической адсорбции азота при разных давлениях. Для этого определяют количество азота, необходимого для образования монослоя на поверхности катализатора, и, зная диаметр молекулы N 2 , вычисляют суммарную площадь. Помимо определения общей площади поверхности проводят хемосорбцию разных молекул, что позволяет оценить число активных центров и получить информацию об их свойствах.

В распоряжении исследователей имеются разные методы изучения структуры поверхности катализаторов на атомном уровне. Уникальную информацию позволяет получить метод

EXAFS . Среди спектроскопических методов все шире применяются УФ-, рентгеновская и оже-фотоэлектронная спектроскопия. Большой интерес представляет масс-спектрометрия вторичных ионов и спектроскопия ионного рассеяния. Для исследования природы каталитических комплексов применяются измерения ЯМР. Сканирующий туннельный микроскоп позволяет увидеть расположение атомов на поверхности катализатора. ПЕРСПЕКТИВЫ Масштабы каталитических процессов в промышленности увеличиваются с каждым годом. Все более широкое применение находят катализаторы для нейтрализации веществ, загрязняющих окружающую среду. Возрастает роль катализаторов в производстве углеводородов и кислородсодержащих синтетических топлив из газа и угля. Весьма перспективным представляется создание топливных элементов для экономичного преобразования энергии топлива в электрическую энергию.

Новые концепции катализа позволят получать полимерные материалы и другие продукты, обладающие многими ценными свойствами, усовершенствовать методы получения энергии, увеличить производство пищевых продуктов, в частности путем синтеза белков из алканов и аммиака с помощью микроорганизмов. Возможно, удастся разработать генно-инженерные способы получения ферментов и металлоорганических соединений, приближающихся по своей каталитической активности и селективности к природным биологическим катализаторам.

ЛИТЕРАТУРА Гейтс Б.К. Химия каталитических процессов . М., 1981
Боресков Г.К. Катализ. Вопросы теории и практики . Новосибирск, 1987
Ганкин В.Ю., Ганкин Ю.В. Новая общая теория катализа . Л., 1991
Токабе К. Катализаторы и каталитические процессы . М., 1993

Большое число ферментов уже в начале XX века поставило перед исследователями вопро­сы о номенклатуре и классификации ферментов. Отличительным признаком фермента в начале XX века стало окончание «аза», которое использовали, добавляя его вначале к на­званию субстрата (amylum -крахмал - амилаза), а затем к названию реакции (дегидрирова­ние - дегидрогеназы). Созданная Международным союзом химиков и биохимиков Ко­миссия по Ферментам (КФ) разработала основные принципы классификации и номенклатуры ферментов, которые были приняты в 1961 г. В основу классификации был положен тип катализируемой ферментом реакции. Все ферменты по этому признаку были разделены на 6 классов, в каждом из которых есть несколько подклассов.

1.Оксидоредуктазы - ферменты, которые катализируют реакции восстановления или окисления. Например алкогольдегидрогеназа, фермент, который окисляет этиловый спирт в уксусный альдегид. Второй фермент, известный как альдегиддегидрогеназа затем преобразовывает уксусный альдегид в ацетил КoA. Оксидоредуктазы часто требуют участия кофакторов, выполняющих роль промежуточных акцепторов водорода в приводимом ниже примере это НАД + .

Оксидазы – разновидность оксидоредуктаз. Так называются ферменты, использующие кислород в качестве конечного акцептора водородов. Примером может служить глюкозоксидаза, которая окисляет глюкозу в глюконовую кислоту. Промежуточным акцептором водородов служит ФАД.

2.Трансферазы - ферменты, которые переносят функциональные группы от молекулы донора на молекулу акцептор. Примером могут служить метилтрансферазы, которые передает метиловую группу отS-аденозилметионина какому либо акцептору. Ниже показана реакция, катализируемая катехол-O-метилтрансферазой - ферментом, участвующим в метаболизме нейромедиаторов адреналина и норадреналина.

Еще один очень важный пример трансфераз – ферменты катализирующие перенос аминогруппы -трансаминазы.

Трансаминазы используют аминокислоту в качестве донора аминогруппы, которую они переносят на - кетокислоту, превращая соответственно аминокислоту – донор вкетокислоту и кетокислоту – акцептор в аминокислоту. Это используется для взаимопревращения некоторых аминокислот и позволяет аминокислотам вступать в пути метаболизма углеводов или липидов.

Трансферазами, которые будут часто упоминаться в биохимии, являются киназы, катализирующие перенос фосфата от макроэргической молекулы АТФ на субстрат. Существует множество киназ, играющих важную роль в метаболизме клеток.

3. Гидролазы -ферменты катализирующие биологические реакции гидролиза. Они разрывают ковалентные связи. присоединяя по месту разрыва элементы воды. Липазы, фосфатазы, ацетилхолинэстераза и протеазы - все это примеры гидролитических ферментов.

4. Лиазы (десмолазы) –ферменты, которые катализируют распадC-C,C-OиC-Nсвязями негидролитическим путем с образованием двойных связей. Примером может быть фермент ДОФА декарбоксилаза, которая является ключевым ферментом в синтезе биогенных аминов адреналина и норадреналина.

5. Изомеразы - ферменты, которые катализируют внутримолекулярные перегруппировки. При этом происходит взаимопревращение оптических геометрических и позиционных изомеров. Эпимеразы и рацемазы - примеры ферментов этого класса.

6. Лигазы катализируют образованиеC-O,C-S,C-NилиC-Cсвязей, используя энергию гидролиза АТФ. Фосфат может или не может ковалентно связываться с продуктом реакции.

Комиссия по ферментам предложила и принципы номенклатуры ферментов. Рекомендуется использовать систематическую и рабочую номенклатуры. В основу систематической номенклатуры положен тот же принцип, что и для классификации – тип катализируемой реакции. На первый взгляд названия при этом становятся громоздкими, но зато из названия становится ясным, что делает фермент. Название состоит из двух частей: названия участников реакции (в зависимости от класса это могут быть субстраты, промежуточные акцептоы) и типа катализируемой реакции с окончанием «аза».

Каждый фермент получает специфический кодовый номер-шифр фермента, отражающий его положение в классификации: первая цифра характеризует класс фермента, вторая –подкласс и третья подподкласс. Каждый подподкласс представляет собой список ферментов. Порядковый номер фермента в этом списке – четвертая цифра кода. На рис 1-1 показан шифр креатинфосфокиназы – КФ.2.7.3.2. Этот фермент катализирует реакцию фосфорилирования креатина. Систематическое название фермента АТФ: креатинфосфотрансфераза. Рабочее название этого фермента креатинкиназа или креатинфофокиназа

Рис 2-1. Шифр креатинфосфокиназы и место фермента в классификации ферментов

В данной статьей будут рассмотрены каталитические реакции. Читателя ознакомят с общим представлением о катализаторах и их воздействии на систему, а также будут описаны виды реакций, особенности их протекания и многое другое.

Введение в катализ

Прежде чем ознакомиться с каталитическими реакциями, стоит узнать, что же такое - катализ.

Это выборочный процесс ускорения, определенного термодинамически разрешенного направления реакции, что подвергается воздействию катализатора. Он многократно включается во взаимодействие химической природы, а влияние оказывает на участников реакции. В конце любого цикла промежуточного характера катализатор возобновляет свою изначальную форму. Введено в оборот понятие катализатора было Я. Барцелиусом и Йенсом в 1835.

Общие сведения

Катализация широко распространяется в природе и повсеместно используется человеком в технологической промышленности. Преобладающее количество всех используемых в промышленности реакций каталитические. Существует понятие об автокатализе - явлении, при котором ускоритель выступает в качестве продукта реакции либо входит в состав исходных соединений.

Все виды химического взаимодействия реагирующих веществ делятся на каталитические и некаталитические реакции. Ускорение реакций с участием катализаторов называется положительным катализом. Замедление скорости взаимодействия протекает при участии ингибиторов. Реакции носят отрицательно-каталитический характер.

Каталитическая реакция - это не только способ увеличения производительной мощи, но и возможность, повышающая качество получаемого продукта. Это обусловлено способностью специально подобранного вещества ускорить основную реакцию и замедлить скорость параллельно идущих.

Каталитические реакции также понижают затраты энергии, что расходует аппаратура. Это связано с тем, что ускорение позволяет протекать процессу в условиях более низкой температуры, которая требовалась бы без его наличия.

Примером каталитической реакции может служить получение на производстве таких ценных вещей, как: азотная кислота, водород, аммиак и т. д. Наибольшее применение эти процессы находят в производстве альдегидов, фенола, различных пластмасс, смол и каучуков и т. д.

Разнообразие реакций

Суть катализа лежит в переведении механизма протекания реакции на самый выгодный вариант. Это становится возможным благодаря снижению энергии активации.

Катализатор образовывает слабую химическую связь с определенным реагентом молекулы. Это позволяет облегчить протекание реакции с другим реагентом. Вещества, которые относятся к каталитическим, не влияют на смещение химического равновесия, так как действуют обратимо в обоих направлениях.

Катализ делится на два основных типа: гомогенный и гетерогенный. Общей чертой всех взаимодействий первого типа является нахождение катализатора в общей фазе с реактивом самой реакции. Второй тип имеет отличие в этом пункте.

Гомогенные каталитические реакции показывают нам, что ускоритель, вступая во взаимодействие с определенным веществом, образует промежуточное соединение. Это в дальнейшем приведет к снижению количества энергии, необходимого для активации.

Гетерогенный катализ ускоряет процесс. Как правило, протекает на поверхности твердых тел. Вследствие этого, возможности катализатора и его активность определяются величиной поверхности и индивидуальных свойств. Гетерогенно-каталитическая реакция имеет более сложный механизм работы, чем гомогенная. В его механизм включено 5 стадий, каждая из которых может быть обратимой.

На первой стадии начинается диффузия взаимодействующих реагентов к площади твердого вещества, далее происходит адсорбция физического характера и следом хемосорбция. Вследствие этого наступает третья стадия, при которой реакция начинает протекать между молекулами реагирующих веществ. На четвертой стадии наблюдается десорбция продукта. На пятой стадии происходит диффузия конечного вещества в общие потоки с плоскости катализатора.

Каталитические материалы

Существует понятие о носителе катализатора. Он представляет собой материал инертного или малоактивного типа, необходимый для приведения частицы, участвующей в фазе катализа, в стабильное состояние.

Гетерогенное ускорение необходимо для предотвращения процессов спекания и агломерации активных компонентов. В преобладающем ряде случаев количество носителей превышает наличие нанесенного компонента активного типа. К главному списку требований, которыми должен обладать носитель, можно отнести большую площадь и пористость поверхности, стабильность термической природы, инертность и устойчивость к механическому воздействию.

Химическая основа. Химия ускорения протекания взаимодействия между веществами позволяет нам выделить два вида веществ, а именно катализаторы и ингибиторы. Последние, в свою очередь, замедляют скорость реакции. Одной из разновидностей катализаторов являются ферменты.

Катализаторы стехиометрически не вступают в отношения с продуктом самой реакции и в конечном итоге всегда регенерируются. В современности существует множество способов влияния на процесс молекулярной активации. Однако катализ служит основой химического производства.

Природа катализаторов позволяет их разделить на гомогенные, гетерогенные, межфазовые, ферментативные и мицеллярные. Химическая реакция при участии катализатора позволит снизить затраты энергии, необходимой для ее активации. Например, некаталитическое разложение NH3 до азота и водорода потребует около 320 кДж/моль. Эта же реакция, но под воздействием платины, позволит снизить это число до 150 кДж/моль.

Процесс гидрирования

Преобладающее количество реакций с участием катализаторов базируется на активации водородного атома и определенной молекулы, что в дальнейшем приводит к взаимодействию химической природы. Данное явление называют гидрированием. Оно лежит в основе большинства этапов нефтепереработки и создания жидкого горючего из угля. Производство последнего было открыто в Германии, что обусловлено отсутствием месторождений нефти на территории страны. Создание такого топлива называется процессом Бергиуса. Заключается он в прямом соединении водорода и угля. Уголь подвергают нагреванию в условиях определенного давления и наличия водорода. Вследствие этого образуется продукт жидкого типа. Катализаторами выступают оксиды железа. Но иногда используют и вещества на основе таких металлов, как молибден и олово.

Существует и другой способ получения такого же топлива, который называют процессом Фишера-Тропша. Он состоит из двух стадий. На первом этапе уголь подвергают газификации, обрабатывая его взаимодействием паров воды и О 2 . Данная реакция приводит к образованию водородной смеси и оксида углерода. Далее при помощи катализаторов полученную смесь переводят в состояние жидкого топлива.

Взаимосвязь кислотности и каталитических возможностей

Каталитическая реакция - это явление, зависящее от кислотных свойств самого катализатора. В соответствии с определением по Й. Бренстеду, кислота - это вещество, умеющее отдавать протоны. Сильная кислота легко отдаст свой протон в пользование основанию. Г. Льюис определял кислоту как вещество, способное принимать на себя электронные пары от веществ-доноров и образовывать вследствие этого ковалентную связь. Две эти идеи позволили человеку определить суть механизма катализа.

Сила кислоты определяется при помощи наборов оснований, способных изменять свой цвет вследствие присоединения протона. Некоторые каталитические вещества, используемые в промышленности, могут вести себя как чрезвычайно сильные кислоты. Их сила определяет темп протонирования, а потому является очень важной характеристикой.

Кислотная активность катализатора обусловлена его способностями вступать в реакции с углеводородами, образовывая при этом промежуточный продукт - карбений иона.

Процесс дегидрирования

Каталитической реакцией является также и дегидрирование. Оно нередко используется в разных промышленных отраслях. Несмотря на то что каталитические процессы, основанные на дегидрировании, используются реже, чем реакции гидрирования, тем не менее они занимают важное место в человеческой деятельности. Примером каталитической реакции такого типа может послужить получение стирола - важного мономера. Для начала происходит дегидрирование этилбензола с участием веществ, содержащих оксид железа. Человек часто использует данное явление для дегидрирования многих алканов.

Двойное действие

Существуют катализаторы двойного действия, способные ускорять реакцию сразу двух типов. Вследствие чего приводят к лучшим результатам, в сравнении с пропусканием реагентов поочередно сквозь 2 реактора, содержащих только по одному типу катализаторов. Это обусловлено тем, что активный центр ускорителя с двойным действием пребывает в близком положении с другим таким же центром, а также с промежуточным продуктом. К хорошему результату приводит, например, объединение катализаторов, активирующих водород, с веществом, позволяющим протекать процессу изомеризации углеводорода. Активация часто осуществляется металлами, а изомеризация протекает при участии кислот.

Специфика основных каталитических реакций

Способности и эффективность катализатора обусловлены также его основными свойствами. Ярким примером может служить гидроксид натрия, который применяют в ходе гидролиза жиров для получения мыла. Такие типы катализаторов также используются в ходе производства пенопласта и пластинок из полиуретана. Уретан получают в ходе взаимодействия спирта и изоцианата. Ускорение реакции происходит при воздействии определенного основного амина. Основание присоединяется к атому углерода, содержащемуся в изоцианатовой молекуле. Вследствие этого атом азота становится отрицательно заряженным. Это приводит к повышению активности в отношении к спирту.

Полимеризация стереоспецифического характера

Важное историческое значение в истории изучения катализа имеет открытие полимеризации олефина с последующим получением стереорегулярных полимерных веществ. Открытие катализаторов, для которых характерна стереоспецифическая полимеризация, принадлежит К. Циглеру. Работы по получению полимеров, проведенные Циглером, заинтересовали Дж. Натта, который выдвинул предположение о том, что полимерная уникальность должна определяться его стереорегулярностью. Большое количество экспериментов с участием рентгеновских лучей, подвергающихся дифракции, доказали, что полимер, полученный из пропилена под воздействием катализатора Циглера, является высококристалличным. Эффект действия носит стереорегулярный характер.

Реакции подобного типа проходят на плоскости твердого катализатора, содержащего в себе металлы переходного типа, например Ti, Cr, V, Zr. Они должны находиться в неполном окислении. Уравнение каталитической реакции между взаимодействующими TiCl 4 и Al(C 2 H 5) 3 , в ходе которой образуется осадок, служит ярким тому примером. Здесь титан восстановлен до 3-хвалентного состояния. Такой вид активной системы дает возможность полимеризировать пропилен в обычных условиях температуры и давления.

Окисление в каталитических реакция

Каталитические реакции окисления обширно используются человеком, что обусловлено способностью определенных веществ регулировать скорость протекания самой реакции. Некоторые случаи требуют полного окисления, например нейтрализация CO и загрязнений, содержащих углеводороды. Однако подавляющее количество реакций требует неполного окисления. Это необходимо для получения в промышленности ценных, но промежуточных продуктов, что могут содержать определенную и важную промежуточную группу: COOH, CN, CHO, C-CO. При этом человек использует как гетерогенные, так и моногенные виды катализаторов.

Среди всех веществ, способных ускорять протекание химических реакций, важное место отведено оксидам. Преимущественно в твердом состоянии. Протекание окисления делится на 2 этапа. На первой стадии оксид кислорода захватывается углеводородной молекулой адсорбированного оксида. Вследствие этого происходит восстановление оксида и окисление углеводорода. Возобновленный оксид вступает во взаимодействие с О 2 и возвращается к изначальному состоянию.