Идеальный газ в потенциальном силовом поле. Газ в потенциальном поле

Средняя длина свободного пробега молекулы равна отношению пути, пройденного молекулой за 1 с, к числу происшедших за это время столкновений: = / =1/(42r 2 n 0).

24.Внутренняя энергия идеального газа.

Внутренняя энергия – это сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

Внутренняя энергия системы зависит только от её состояния и является однозначной функцией состояния.

Внутренняя энергия идеального газа пропорциональна массе газа и его термодинамической температуре.

Работа газа при расширении.

Пусть в цилиндре под поршнем находится газ, занимающий объём V под давлением p. Площадь поршня S. Сила, с которой газ давит на поршень, F=pS. При расширении газа поршень понимается на высоту dh, при этом газ совершает работу A=Fdh=pSdh. Но Sdh=dV – увеличение объёма газа. Следовательно элементарная работа A=pdV. Полную работу A, совершаемую газом при изменении его объёма от V1 до V2 найдём интегрированием

Результат интегрирования зависит от процесса, протекающего в газах.

При изохорном процессе V=const, следовательно, dV=0 и A=0.

При изобарном процессе p=const, тогда

Работа при изобарном расширении газа равна произведению давления газа на увеличение объёма.

При изотермическом процессе T=const. p=(mRT)/(MV).

Количество теплоты.

Энергия, переданная газу путём теплообмена, называется количеством теплоты Q .

При сообщении системе бесконечно малого количества теплоты Q его температура изменится на dT.

26. Теплоёмкостью С системы называют величину, равную отношению сообщенного системе количества теплоты Q к изменению температуры dT системы: C=Q/dT.

Различают удельную теплоёмкость (теплоёмкость 1 кг вещества) c=Q/(mdT) и молярную теплоёмкость (теплоёмкость 1 моль вещества) c=Mc.

При различных процессах, протекающих в термодинамических системах, теплоёмкости будут различны.

Больцмана распределение

Больцмана распределение , статистически равновесная функция распределения по импульсам р и координатам r частиц идеального газа, молекулы которого движутся по законам классической механики, во внешнем потенциальном поле:

Здесь p 2 /2m - кинетическая энергия молекулы массой m, U(ν) - её потенциальная энергия во внешнем поле, Т - абсолютная температуpa газа. Постоянная А определяется из условия, что суммарное число частиц, находящихся в различных возможных состояниях, равно полному числу частиц в системе (условие нормировки).
Больцмана распределение представляет собой частный случай канонического распределения Гиббса для идеального газа во внешнем потенциальном поле, т. к. при отсутствии взаимодействия между частицами распределение Гиббса распадается на произведение Больцмана распределения для отдельных частиц. Больцмана распределение при U=0 даёт Максвелла распределение. Фкнкцию распределения (1) иногда называют распределением Максвелла - Больцмана, а распределением Больцмана называют функцию распределения (1), проинтегрированную по всем импульсам частиц и представляющую собой плотность числа частиц в точке ν:

где n 0 - плотность числа частиц системы в отсутствии внешнего поля. Отношение плотностей числа частиц в различных точках зависит от разности значений потенциальной энергии в этих точках

где ΔU= U(ν 1)-U(ν 2). В частности, из (3) следует барометрическая формула, определяющая распределение по высоте газа в поле тяготения над земной поверхностью. В этом случае ΔU=mgh, где g - ускорение свободного падения, m - масса частицы, h - высота над земной поверхностью. Для смеси газов с различной массой частиц Больцмана распределение показывает, что распределение парциальных плотностей частиц для каждого из компонентов независимо от других компонентов. Для газа во вращающемся сосуде U (r) определяет потенциал поля центробежных сил U (r)=-mω 2 r 2 /2, где ω - угловая скорость вращения. На этом эффекте основано разделение изотопов и высокодисперсных систем при помощи ультрацентрифуги.
Для квантовых идеальных газов состояние отдельных частиц определяется не импульсами и координатами, а квантовыми уровнями энергии Ε i частицы в поле U(r). В этом случае среднее число частиц в i-том квантовом состоянии, или среднее число заполнения, равно:

где μ - химический потенциал, определяемый из условия, что суммарное число частиц на всех квантовых уровнях Ε i равно полному числу частиц N в системе: Σin i =N. Формула (4) справедлива при таких температурахpax и плотностях, когда среднее расстояние между частицами значительно больше длины волны де Бройля, соответствующей средней тепловой скорости, т. е. когда можно пренебречь не только силовым взаимодействием частиц, но и их взаимным квантовомеханическим влиянием (нет квантового вырождения газа. (см. Вырожденный газ ). Таким образом, Больцмана распределение есть предельный случай как Ферми - Дирака распределения, так и Бозе - Эйнштейна распределения для газов малой плотности.

www.all-fizika.com

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

БОЛЬЦМАН (Boltzmann) Людвиг (1844-1906), австрийский физик, один из основателей статистической физики и физической кинетики, иностранный член-корреспондент Петербургской АН (1899). Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Дал (1872) статистическое обоснование второго начала термодинамики. Вывел один из законов теплового излучения (закон Стефана - Больцмана).

Из-за хаотического движения изменения в положении каждой частицы (молекулы, атома и т.д.) физической системы (макроскопического тела) носят характер случайного процесса. Поэтому можно говорить о вероятности обнаружить частицу в той или иной области пространства.

Из кинематики известно, что положение частицы в пространстве характеризуется ее радиусом-вектором или координатами.

Рассмотрим вероятность dW() обнаружить частицу в области пространства определяемой малым интервалом значений радиуса-вектора , если физическая система находится в состоянии термодинамического равновесия.

Векторный интервал будем измерять объемом dV=dxdydz.

Плотность вероятности (функция вероятности распределения значений радиуса-вектора )

.

Частица в данный момент времени реально где-то находится в указанном пространстве, значит должно выполняться условие нормировки:

Найдем функцию вероятности распределения частиц f() классического идеального газа. Газ занимает весь объем V и находится в состоянии термодинамического равновесия с температурой Т.

При отсутствии внешнего силового поля все положения каждой частицы равновероятны, т.е. газ занимает весь объем с одинаковой плотностью. Поэтому f() = c onst.

Используя условие нормировки найдем, что

,

Если число частиц газа N, то концентрация n = N/V .

Следовательно, f(r) =n/N .

Вывод : в отсутствие внешнего силового поля вероятность dW() обнаружить частицу идеального газа в объеме dV не зависит от положения этого объема в пространстве, т.е. .

Поместим идеальный газ во внешнее силовое поле.

В результате пространственного перераспределения частиц газа плотность вероятности f() ¹ c onst.

Концентрация частиц газа n и давление его Р будут различными, т.е. в пределе где D N — среднее число частиц в объеме D V и давление в пределе , где D F- абсолютное значение средней силы, действующей нормально на площадку D S.

Если силы внешнего поля являются потенциальными и действуют в одном направлении (например, сила тяжести Земли направлена вдоль оси z), то силы давления, действующие на верхнее dS 2 и нижнее dS 1 основания объема dV, не будут равны друг другу (рис. 2.2).

В этом случае разность сил давления dF на основания dS 1 и dS 2 должна быть скомпенсирована действием сил внешнего поля .

Суммарная разность сил давления dF = nGdV,

где G — сила, действующая на одну частицу со стороны внешнего поля.

Разность сил давления (по определению давления) dF = dPdxdy. Следовательно, dP = nGdz.

Из механики известно, что потенциальная энергия частицы во внешнем силовом поле связана с силой этого поля соотношением .

Тогда разность давлений на верхнее и нижнее основания выделенного объема dP = — n dW p .

В состоянии термодинамического равновесия физической системы ее температура Т в пределах объема dV везде одинакова. Поэтому используем уравнение состояния идеального газа для давления dP = kTdn.

Решив совместно последние два равенства получим, что

— ndW p = kTdn или .

После преобразований найдем, что

,

где ℓ n n o — постоянная интегрирования (n o — концентрации частиц в том месте пространства, где W p =0).

После потенцирования, получим

.

Вывод: в состоянии термодинамического равновесия концентрация (плотность) частиц идеального газа, находящегося во внешнем силовом поле, изменяется по закону, определяемому формулой (2.11), которую называют распределением Больцмана .

С учетом (2.11) функция вероятности распределения молекул в поле силы тяжести принимает вид

.

Вероятность обнаружить частицу идеального газа в объеме dV, расположенного у точки, определяемой радиусом-вектором , представим в виде

.

Для идеального газа давление отличается от концентрации только постоянным множителем kT (P=nkT).

Следовательно, для таких газов давление

,

Применим распределение Больцмана к атмосферному воздуху, находящему в поле тяготения Земли.

В состав атмосферы Земли входят газы: азот — 78,1 %; кислород — 21 %; аргон-0,9 %. Масса атмосферы -5,15 × 10 18 кг. На высоте 20-25 км — слой озона.

Вблизи земной поверхности потенциальная энергия частиц воздуха на высоте h W p = m o gh , где m o — масса частицы.

Потенциальная энергия на уровне Земли (h=0) равна нулю (W p =0).

Если в состоянии термодинамического равновесия частицы земной атмосферы имеют температуру Т, то изменение давления атмосферного воздуха с высотой происходит по закону

.

Формула (2.15) называется барометрической формулой ; применима для разреженных смесей газов.

Заключение : для земной атмосферы чем тяжелее газ, тем быстрее падает его давление в зависимости от высоты, т.е. по мере увеличения высоты атмосфера должна все более обогащаться легкими газами. Из-за изменения температуры атмосфера не находится в равновесном состоянии. Следовательно, барометрическую формулу можно применять к малым участкам, в пределах которых изменения температуры не происходит. Кроме того, на неравновесность земной атмосферы влияет гравитационное поле Земли, которое не может удержать ее вблизи поверхности планеты. Происходит рассеивание атмосферы и тем быстрее, чем слабее гравитационное поле. Например, земная атмосфера рассеивается достаточно медленно. За время существования Земли (

4-5 млрд. лет) она потеряла малую часть своей атмосферы (в основном легких газов: водорода, гелия и др.).

Гравитационное поле Луны слабее земного, поэтому она практически полностью потеряла свою атмосферу.

Неравновесность земной атмосферы можно доказать следующим образом. Допустим, что атмосфера Земли пришла в состояние термодинамического равновесия и в любой точке ее пространства она имеет постоянную температуру. Применим формулу Больцмана (2.11), в которой роль потенциальной энергии выполняет потенциальная энергия гравитационного поля Земли, т.е.

где g — гравитационная постоянная; М з — масса Земли; m o — масса частицы воздуха; r — расстояние частицы от центра Земли.

При r ® ¥ W p =0. Поэтому распределение Больцмана (2.11) принимает вид

,

files.lib.sfu-kras.ru

11.2 Закон распределения молекул идеального газа во внешнем силовом поле

При рассмотрении кинетической теории газов и закона распределения Максвелла предполагалось, что на молекулы газа не действуют никакие силы, за исключением ударов молекул. Поэтому, молекулы равномерно распределяются по всему сосуду. В действительности молекулы любого газа всегда находятся в поле тяготения Земли. Вследствие этого, каждая молекула массой m испытывает действие силы тяжести f =mg.

Выделим горизонтальный элемент объема газа высотой dh и площадью основания S (рис. 11.2). Считаем газ однородным и температуру его постоянной. Число молекул в этом объеме равно произведению его объема dV=Sdh на число молекул в единице объема. Полный вес молекул в выделенном элементе равен

Действие веса dF вызывает давление, равное

минус — т.к. при увеличении dh давление уменьшается. Согласно основному уравнению молекулярно-кинетической теории

Приравнивая правые части (11.2) и (11.3), получаем


или

Интегрируя это выражение в пределах от до h (соответственно концентрация изменяется от до n):


получим

Потенцируя полученное выражение, находим

Показатель степени при exp имеет множитель , который определяет приращение потенциальной энергии молекул газа. Если переместить молекулу с уровня до уровня h, то изменение ее потенциальной энергии будет

Тогда уравнение для концентрации молекул преобразуется к виду

Это уравнение отображает общий закон Больцмана и дает распределение числа частиц в зависимости от их потенциальной энергии. Он применим к любой системе частиц, находящихся в силовом поле, например в электрическом.

physics-lectures.ru

Закон больцмана о распределении частиц во внешнем потенциальном поле

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

Так как а , то (2.5.1) можно представить в виде

На рисунке 2.11 показана зависимость концентрации различных газов от высоты. Видно, что число более тяжелых молекул с высотой убывает быстрее, чем легких.

Больцман доказал, что соотношение (2.5.3) справедливо не только в потенциальном поле сил гравитации, но и в любом потенциальном поле, для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Алименты в Казахстане: порядок истребования и необходимые процедуры В зaвисимости от различных жизненных ситуаций может возникнуть необходимость в выплате или истребовании алиментов. В данной статье вы узнаете, что такое алименты, […]

  • Обучение по тепловым энергоустановкам - ПТЭТЭ Срок обучения: от 36 до 72 часов Стоимость: от4000 рублей за специалиста Очный и заочный формат обучения Вам требуется обучить персонал по правилам работы в тепловых энергоустановках? […]
  • Георгиевский - Правила выполнения архитектурно-строительных чертежей О. В. ГеоргиевскийПравила выполнения архитектурно-строительныхчертежейОлег Викторович Георгиевский,кандидат технических наук,профессор кафедры начертательной […]
  • Упрощение выражений Свойства сложения, вычитания, умножения и деления полезны тем, что позволяют преобразовывать суммы и произведения в удобные выражения для вычислений. Научимся, как можно с помощью этих свойств упрощать […]
  • Пусть ИГ находится во внешнем гравитационном поле (в поле силы тяжести Земли). При нахождении концентрации молекул газа n (x, y, z ) в этом поле будем исходить из предположения, что любой бесконечно малый объем газа находится в состоянии механического равновесия, а температура газа T во всех точках одинакова. Только при выполнении этих условий состояние газа можно считать равновесным, так как иначе в газе возникли бы потоки вещества и теплоты, что сделало бы состояние газа неравновесным.

    Поле силы тяжести Земли будем считать однородным. Ось OZ направлена вертикально вверх. Тогда концентрация молекул газа будет зависеть только от координаты z (высоты h ): n=n (z )или n =n (h ). На рис. (1) схематически изображен бесконечно малый выделенный объем газа dV=dSdz , находящийся в равновесии.

    Снизу на этот выделенный объем газа воздействует давление p , а сверху – соответственно давление p+dp . Разность давлений на нижнее и верхнее основание выделенного объема газа dV=dSdz равна гидростатическому давлению:

    где: r= (Mp )/(RT ) – плотность газа, g – ускорение свободного падения, M – молярная масса газа.

    Подставим в полученное выражения плотность газа:

    Из этого уравнения следует, что

    Интегрирование последнего уравнения при условии позволяет определить зависимость давления от высоты:

    где p 0 - давление газа на высоте, принятой за начало отсчета.

    С учетом формулы для постоянной Больцмана:

    и того, что М = m 0 N A и z = h

    Барометрическая формула:

    Барометрическая формула позволяет рассчитывать зависимость давления атмосферы от высоты в случае, если температура атмосферы постоянна, а гравитационное поле - однородно. Для реальной атмосферы Земли на высотах примерно до 10 км её температура уменьшается в среднем на 6 К на 1 км подъема. Далее до высот порядка 20 км температура остается практически постоянной, а выше - постепенно возрастает до ~ 270 К на высоте около 55 км. На этой высоте давление атмосферы становится уже меньше 0,001 от атмосферного давления на уровне моря.

    Несмотря на указанную зависимость температуры атмосферы Земли от высоты, барометрическая формула позволяет достаточно точно определять высоту по результатам измерения давления, что нашло применение в приборах, предназначенных для определения высоты полета самолетов.



    Распределение Больцмана было получено в 1866 году Л. Больцманом. Это распределение позволяет рассчитывать концентрацию газа, находящегося в равновесном состоянии во внешнем силовом поле. Причем это поле не должно быть обязательно гравитационным, а может иметь любое происхождение, в частности, быть электростатическим или полем сил инерции.

    Анализ распределения Больцмана показывает, что концентрация молекул газа тем выше, чем меньше их потенциальная энергия. Кроме этого, с понижением температуры увеличивается отличие концентраций в точках с различными значениями потенциальной энергии молекул. А при стремлении температуры к абсолютному нулю, молекулы начинают скапливаться в месте, где их потенциальная энергия принимает наименьшее значение. Указанные особенности распределения Больцмана являются следствием теплового движения молекул, так как кинетическая энергия их поступательного движения в среднем равна W к = (3/2 )kT и уменьшается пропорционально уменьшению температуры. А уменьшение кинетической энергии приводит к уменьшению количества молекул, способных преодолеть потенциальный порог, высота которого характеризуется величиной потенциальной энергии высотой W p .

    Опыт Перрена.

    Распределение Больцмана было использовано французским физиком Жаном Батистом Перреном (1870–1942) при экспериментальном определения постоянной Больцмана k и постоянной Авогадро N A .

    В работах, выполненных Перреном в 1908-1911 гг., измерялось распределение концентрации микроскопических частиц во внешнем гравитационном поле. Отметим, что совокупность микрочастиц, находящихся во взвешенном состоянии в жидкости, близка по своей молекулярно-кинетической структуре к идеальному газу и может описываться газовыми законами. Это дает возможность при определении распределения микрочастиц во внешнем силовом поле использовать формулу Больцмана.

    Исследуя в микроскоп броуновское движение, Ж. Перрен убедился, что броуновские частицы распределяются по высоте подобно молекулам газа в поле тяготения. Применив к этим частицам больцмановское распределение, можно записать:

    где m масса частицы,

    m 1 – масса вытесненной ею жидкости;

    m=4/3πr 3 ρ, m 1 = 4/3πr 3 ρ 1

    (r – радиус частицы, ρ – плотность частицы, ρ 1 – плотность жидкости).

    Если n 1 и n 2 – концентрации частиц на уровнях h 1 и h 2 ,

    Значение N A , получаемое из работ Ж. Перрена, соответствовало значениям, полученным в других опытах. Это подтверждает применимость к броуновским частицам распределения Больцмана.

    Распределение Больцмана для частиц во внешнем потенциальном поле

    Газ, на который не действует внешнее силовое поле, равно­мерно заполняет объем, в котором он находится, благодаря хаотичности теплового движения молекул. Если на молекулы газа действуют внешние силы, то концентрация газа не будет одинаковой во всех точках объема. Рассмотрим в качестве примера атмосферный газ, находящийся в поле земного тяго­тения. Если бы отсутствовало тепловое движение, то все мо­лекулы атмосферы опустились бы на поверхность Земли под действием сил тяжести и земная атмосфера не могла бы суще­ствовать. Однако этому препятствует хаотическое движение молекул, которое способствует обратному процессу - стремле­нию атмосферного газа рассеяться и заполнить равномерно всю Вселенную. Следовательно, атмосфера Земли может существовать за счет этих двух факторов в некотором равновесном состоянии, при котором ее плотность, концентрация молекул и давление будут зависеть от пространственных ко­ординат.

    Найдем закон измене­ния этих величин в зависимости от высоты над поверхностью Земли. Бу­дем считать, что газ на­ходится в состоянии термодинамического равно­весия и его температура всюду одинакова. Выделим некоторый столб газа, имеющий форму цилиндра, площадью поперечного сече­ния s, и направим ось z вдоль столба по направлению от поверхности Земли. Установим начало отсчета координаты z на поверхности Земли (рис. 19.3).

    Выделим на высоте z элементарный слой столба газа тол­щиной dz и воспользуемся тем, что этот слой, как и весь столб, находится в состоянии механического равновесия. Это значит, что равнодействующая всех сил, действующих на слой, равна нулю. Из рис. 19.3 видно, что равнодействующая складыва­ется из трех сил: две силы давления F H и F B , действующие на нижнее и верхнее основание слоя, и сила тяжести dP самого слоя. Обозначим давление газа в точках нижнего основания p , а в точках верхнего основания р+ dp. Тогда

    F H = pS ; F B = (p + dp)S; dP = ρgSdz,

    где ρ - плотность слоя воздуха.

    С учетом направления сил условие равновесия слоя запишется в виде

    F B + dP = F H (18.28)

    + dp) S + ρgSdz = pS. (18.29)

    Раскрыв в (18.29) скобки, получим дифференциальное уравнение

    dp = - ρgdz. (18.30)

    Из уравнения Клапейрона - Менделеева следует, что плотность газа связана с давлением формулой

    где т а - масса молекулы газа.

    Используя (18.31), преобразуем дифференциальное урав­нение (18.30) к виду

    . (18.32)

    Интегрируя это уравнение по высоте от 0 до z, получаем

    , (18.33)

    где ln p 0 - постоянная интегрирования.

    Потенциируя (18.33), имеем

    Из (18.34) видно, что р 0 имеет смысл давления атмосферы на поверхности Земли, где z = 0.

    Полученное уравнение определяет зависимость давления атмосферы вблизи Земли от высоты над уровнем моря. Как и следовало ожидать, при увеличении высоты давление уменьшается. В соответствии с формулой (18.34), которая называется барометрической, это уменьшение подчиняется экспоненциальному закону. Измеряя давление по барометру, проградуированному в соответствии с барометрической фор­мулой, можно определить высоту объекта над поверхностью Земли. Такой прибор называется альтиметром и широко при­меняется в авиации.

    Используя барометрическую формулу, легко установить закон распределения концентрации молекул по высоте h над поверхностью Земли. С этой целью воспользуемся уравнени­ем состояния идеального газа p= nkT. В этой формуле дав­ление р и концентрация молекул п зависят от высоты, в то время как температура Т постоянная в соответствии с пред­положением, что газ находится в состоянии термодинамиче­ского равновесия. Из уравнения состояния и барометрической формулы для концентрации п на высоте h вытекает:

    , (18.35)

    где n 0 - концентрация молекул воздуха при h = 0.

    Обратив внимание на то, что в показатель экспоненты в правой части (18.35) входит потенциальная энергия моле­кулы в поле силы тяжести W ПОТ = m a gh, перепишем (18.35) в виде

    . (18.36)

    Оказывается, что выражение (18.36) для распределения молекул имеет общий характер и справедливо для частиц, находящихся во внешнем потенциальном поле любого вида. Это распределение называется распределением Больцмана.

    В распределении Больцмана (18.36) под n 0 следует пони­мать концентрацию молекул в точке поля, где их потенциаль­ная энергия равна нулю, W ПОТ = 0, а п представляет собой концентрацию молекул в точке, где их потенциальная энергия равна W ПОТ.

    Как известно, плотность газа ρ прямо пропорциональна концентрации молекул п. Поэтому, используя (18.35), нетруд­но показать, что распределение плотности воздуха в атмо­сфере Земли будет описываться выражением:

    , (18.37)

    где М - молярная масса газа.

    Из (18.34), (18.35) и (18.37) следует, что в атмосфере Земли р, п и ρ воздуха уменьшаются единообразно с увели­чением высоты.

    Учитывая, что концентрация п по определению равна , где dN - число молекул в элементарном объеме dV , можно представить распределение Больцмана в форме

    Некоторые представления о распределении молекул сразу же следуют из хаотичности теплового движения. Это относится к распределению молекул по направлениям скоростей или к распределению молекул по объему для случая, когда на газ не действуют какие-либо силы. Однако имеется множество случаев, для которых заранее не очевидны следствия допущения о хаотичности теплового движения.

    Прежде всего, возникает вопрос о распределении молекул по величинам скоростей. Каков процент быстрых, средних по скорости, медленных молекул? Далее, может встать задача: найти, как изменится равномерное распределение молекул по плотностям при внесении газа в поле сил, скажем, в поле тяжести, или в электрическое или магнитное поле, если молекулы обладают электрическими или магнитными свойствами. На эти и подобные вопрось! отвечает закон

    Больдмана, который можно вывести, используя аппарат теории вероятностей.

    Рассмотрим небольшой объем пространства - кубик со сторонами построенный в точке Пусть в этом кубике находится значительное число молекул. Среди них мы отберем те, которые имеют компоненты скорости, лежащие в пределах от до от и от до Величины таковы, чтобы в указанном интервале скоростей находилось большое количество молекул. Это нужно для того, чтобы к этим малым объемам можно было применять законы статистической физики (физически бесконечно малые объемы). В дальнейшем будем говорить о таких молекулах, что они обладают координатами около и скоростями около Еще раз подчеркнем, что говорить о количестве молекул, обладающих точно заданной скоростью, нельзя, так как вероятность встретить такую молекулу бесконечно мала. Так как кинетическая энергия молекулы определяется значением скорости, а потенциальная энергия молекулы во внешнем поле зависит от координат молекулы в пространстве, то все выделенные нами молекулы имеют практически одну и ту же энергию

    Закон Больцмана, обоснование которого следует искать в курсах теоретической физики, дает общее выражение для числа молекул, обладающих координатами около и скоростями около это число равно

    здесь А - постоянная, которая может быть найдена для конкретной задачи, абсолютная температура постоянная Больцмана.

    Энергия, входящая в экспоненту, является суммой кинетической энергии поступательного движения молекулы и ее потенциальной энергии во внешнем поле: Поэтому

    Формула распространяется и на случай, когда молекула обладает и другими формами энергии, например вращательной или колебательной. Тогда эти составляющие энергии надо внести в

    Закон Больцмана, или, как еще говорят, распределение Больцмана, показывает, что наибольшей энергии соответствует наименьшее число частиц, скорости и координаты которых лежат в заданном интервале.

    Закон Больцмана мы применим для решения двух важных вопросов, касающихся распределения частиц с высотой и распределения молекул по скоростям.


    При выводе основного уравнения молекулярно-кинетической теории газов предполагается, что молекулы распределены по объему равномерно. Это возможно только при отсутствии внешних сил. На самом деле в земных условиях молекулы испытывают на себе действие поля тяжести, т. е. находятся во внешнем потенциальном поле. В результате действия двух факторов, поля тяжести и теплового движения, в газе устанавливается некоторое распределение молекул по высоте.

    Найдем закон, описывающий зависимость давления газа от высоты над поверхностью земли. Известно, что гидростатическое давление жидкости на глубине h равно

    где - плотность жидкости. Поскольку жидкости мало сжимаемы, можно считать их плотность практически независящей от глубины. Газы, в отличие от жидкостей, довольно легко сжимаемы, поэтому их плотность существенно зависит от высоты. Но и для газов можно пользоваться подобной формулой, если перепад высот небольшой. Предполагая, что высота h точки наблюдения от поверхности земли получила элементарное приращение dh, получим приращение давления

    .

    Из уравнения Клапейрона-Менделеева выразим плотность

    .

    , .

    Интегрируя в предположении, что температура не зависит от высоты, получим так называемую барометрическую формулу :

    ,

    где p 0 , p - давление у поверхности земли и на высоте h соответственно.

    Аналогичная формула получается для зависимости концентрации молекул от высоты. Т.к. n~p, получаем, что

    .

    Показатель экспоненты можно представить в виде

    ,

    где - потенциальная энергия молекулы в поле тяжести Земли. Используя это выражение, получим, что

    .

    Больцман показал, что эта формула является универсальной, описывающей распределение частиц по значениям потенциальной энергии в любом внешнем потенциальном поле. Это соотношение называют законом распределения Больцмана .

    Средняя длина свободного пробега молекул.

    Длина свободного пробега молекулы - это среднее расстояние (обозначаемое ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

    Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

    Формула

    Где - эффективное сечение молекулы, - концентрация молекул.

    Явления переноса в газах.

    • Распространение молекул примеси в газе от источника называется диффузией .

    В состоянии равновесия температура Т и концентрация n во всех точках системы одинакова. При отклонении плотности от равновесного значения в некоторой части системы возникает движение компонент вещества в направлениях, приводящих к выравниванию концентрации по всему объему системы. Связанный с этим движением перенос вещества обусловлен диффузией . Диффузионный поток будет пропорционален градиенту концентрации:



    .
    • Если какое-либо тело движется в газе, то оно сталкивается с молекулами газа и сообщает им импульс. С другой стороны, тело тоже будет испытывать соударения со стороны молекул, и получать собственный импульс, но направленный в противоположную сторону. Газ ускоряется, тело тормозится, то есть на тело действуют силы трения. Такая же сила трения будет действовать и между двумя соседними слоями газа, движущимися с разными скоростями. Это явление носит название внутреннее трение или вязкость газа , причём сила трения пропорциональна градиенту скорости:
    • В состоянии равновесия в среде, содержащей заряженные частицы, потенциал электрического поля в каждой точке соответствует минимуму энергии системы. При наложении внешнего электрического поля возникает неравновесное движение электрических зарядов в таком направлении, чтобы минимизировать энергию системы в новых условиях. Связанный с этим движением перенос электрического заряда называется электропроводностью , а само направленное движение зарядов - электрическим током.

    В процессе диффузии при теплопроводности и электропроводности происходит перенос вещества, а при внутреннем трении – перенос энергии. В основе этих явлений лежит один и тот же механизм – хаотическое движение молекул. Общность механизма, обуславливающего все эти явления переноса, приводит к тому, что их закономерности должны быть похожи друг на друга.