Большой адронный коллайдер (Large Hadron Collider). Перспективы физики элементарных частиц Какие частицы можно разгонять в ускорителях коллайдерах

установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию. В процессе ускорения повышаются скорости частиц, причем нередко до значений, близких к скорости света. В настоящее время многочисленные малые ускорители применяются в медицине (радиационная терапия), а также в промышленности (например, для ионной имплантации в полупроводниках). Крупные же ускорители применяются главным образом в научных целях – для исследования субъядерных процессов и свойств элементарных частиц (см. также ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ).

Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.

Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт – это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ » 1,60219Ч 10 –19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (10 12) электронвольт – на крупнейшем в мире ускорителе.

Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами – энергией и интенсивностью пучка частиц.

В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как «обычные», так и криогенные) и сложные системы юстировки и крепления.

Валошек П. Путешествие в глубь материи. С ускорителем ГЕРА к границам познания . М., 1995

Найти "УСКОРИТЕЛЬ ЧАСТИЦ " на

Многие простые жители планеты задают себе вопрос о том, для чего нужен большой адронный коллайдер. Непонятные большинству научные исследования, на которые потрачено много миллиардов евро, вызывают настороженность и опаску.

Может, это и не исследования вовсе, а прототип машины времени или портал для телепортации инопланетных существ, способной изменить судьбу человечества? Слухи ходят самые фантастичные и страшные. В статье мы попытаемся разобраться, что такое адронный коллайдер и для чего он создавался.

Амбициозный проект человечества

Большой адронный коллайдер на сегодня является мощнейшим на планете ускорителем частиц. Он находится на границе Швейцарии и Франции. Точнее под нею: на глубине 100 метров залегает кольцевой тоннель ускорителя длиной почти 27 километров. Хозяином экспериментального полигона стоимостью, превышающей 10 миллиардов долларов, является Европейский центр ядерных исследований.

Огромное количество ресурсов и тысячи физиков-ядерщиков занимаются тем, что ускоряют протоны и тяжёлые ионы свинца до скорости, близкой к световой, в разных направлениях, после чего сталкивают их друг с другом. Результаты прямых взаимодействий тщательно изучаются.

Предложение создать новый ускоритель частиц поступило ещё в 1984 году. Десять лет велись различные дискуссии насчет того, что будет собой представлять адронный коллайдер, зачем нужен именно такой масштабный исследовательский проект. Только после обсуждения вопросов особенностей технического решения и требуемых параметров установки проект был утверждён. Строительство начали только в 2001 году, выделив для его размещения прежнего ускорителя элементарных частиц - большого электрон-позитронного коллайдера.

Зачем нужен большой адронный коллайдер

Взаимодействие элементарных частиц описывается по-разному. Теория относительности вступает в противоречия с квантовой теорией поля. Недостающим звеном в обретении единого подхода к строению элементарных частиц является невозможность создания теории квантовой гравитации. Вот зачем нужен адронный коллайдер повышенной мощности.

Общая энергия при столкновении частиц составляет 14 тераэлектронвольт, что делает устройство значительно более мощным ускорителем, чем все существующие сегодня в мире. Проведя эксперименты, ранее невозможные по техническим причинам, учёные с большой долей вероятности смогут документально подтвердить или опровергнуть существующие теории микромира.

Изучение кварк-глюонной плазмы, образующейся при столкновении ядер свинца, позволит построить более совершенную теорию сильных взаимодействий, которая сможет кардинально изменить ядерную физику и звёздного пространства.

Бозон Хиггса

В далёком 1960 году физик из Шотландии Питер Хиггс разработал теорию поля Хиггса, согласно которой частицы, попадающие в это поле, подвергаются квантовому воздействию, что в физическом мире можно наблюдать как массу объекта.

Если в ходе экспериментов удастся подтвердить теорию шотландского ядерного физика и найти бозон (квант) Хиггса, то это событие может стать новой отправной точкой для развития жителей Земли.

А открывшиеся управляющего гравитацией, многократно превысят все видимые перспективы развития технического прогресса. Тем более что передовых учёных больше интересует не само наличие бозона Хиггса, а процесс нарушения электрослабой симметрии.

Как он работает

Чтобы экспериментальные частицы достигли немыслимой для поверхности скорости, почти равной в вакууме, их разгоняют постепенно, каждый раз увеличивая энергию.

Сначала линейные ускорители делают инжекцию ионов и протонов свинца, которые после подвергают ступенчатому ускорению. Частицы через бустер попадают в протонный синхротрон, где получают заряд в 28 ГэВ.

На следующем этапе частицы попадают в супер-синхротрон, где энергия их заряда доводится до 450 ГэВ. Достигнув таких показателей, частицы попадают в главное многокилометровое кольцо, где в специально расположенных местах столкновения детекторы подробно фиксируют момент соударения.

Кроме детекторов, способных зафиксировать все процессы при столкновении, для удержания протонных сгустков в ускорителе используют 1625 магнитов, обладающих сверхпроводимостью. Общая их длина превышает 22 километра. Специальная для достижения поддерживает температуру −271 °C. Стоимость каждого такого магнита оценивается в один миллион евро.

Цель оправдывает средства

Для проведения таких амбициозных экспериментов и был построен самый мощный адронный коллайдер. Зачем нужен многомиллиардный научный проект, человечеству рассказывают с нескрываемым восторгом многие учёные. Правда, в случае новых научных открытий, скорее всего, они будут надёжно засекречены.

Даже можно сказать, наверняка. Подтверждением сему является вся история цивилизации. Когда придумали колесо, появились Освоило человечество металлургию - здравствуйте, пушки и ружья!

Все самые современные разработки сегодня становятся достоянием военно-промышленных комплексов развитых стран, но никак не всего человечества. Когда учёные научились расщеплять атом, что появилось первым? Атомные реакторы, дающие электроэнергию, правда, после сотен тысяч смертей в Японии. Жители Хиросимы однозначно были против научного прогресса, который забрал у них и их детей завтрашний день.

Техническое развитие выглядит насмешкой над людьми, потому что человек в нём скоро превратится в самое слабое звено. По теории эволюции, система развивается и крепнет, избавляясь от слабых мест. Может получиться в скором времени так, что нам не останется места в мире совершенствующейся техники. Поэтому вопрос "зачем нужен большой адронный коллайдер именно сейчас" на самом деле - не праздное любопытство, ибо вызван опасением за судьбу всего человечества.

Вопросы, на которые не отвечают

Зачем нам большой адронный коллайдер, если на планете миллионы умирают от голода и неизлечимых, а порой и поддающихся лечению болезней? Разве он поможет побороть это зло? Зачем нужен адронный коллайдер человечеству, которое при всём развитии техники вот уже как сто лет не может научиться успешно бороться с раковыми заболеваниями? А может, просто выгоднее оказывать дорогие медуслуги, чем найти способ исцелить? При существующем миропорядке и этическом развитии лишь горстке представителей человеческой расы весьма необходим большой адронный коллайдер. Зачем он нужен всему населению планеты, ведущему безостановочный бой за право жить в мире, свободном от посягательств на чью-либо жизнь и здоровье? История об этом умалчивает...

Опасения научных коллег

Есть другие представители научной среды, высказывающие серьёзные опасения по поводу безопасности проекта. Велика вероятность того, что научный мир в своих экспериментах, в силу своей ограниченности в знаниях, может утратить контроль над процессами, которые даже толком не изучены.

Такой подход напоминает лабораторные опыты юных химиков - всё смешать и посмотреть, что будет. Последний пример может закончиться взрывом в лаборатории. А если такой «успех» постигнет адронный коллайдер?

Зачем нужен неоправданный риск землянам, тем более что экспериментаторы не могут с полной уверенностью сказать, что процессы столкновений частиц, приводящие к образованию температур, превышающих в 100 тысяч раз температуру нашего светила, не вызовут цепной реакции всего вещества планеты?! Или просто вызовут способную фатально испортить отдых в горах Швейцарии или во французской Ривьере...

Информационная диктатура

Для чего нужен большой адронный коллайдер, когда человечество не может решить менее сложные задачи? Попытка замалчивания альтернативного мнения только подтверждает возможность непредсказуемости хода событий.

Наверное, там, где впервые появился человек, в него и была заложена эта двойственная особенность - делать благо и вредить себе одновременно. Быть может, нам ответ дадут открытия, которые подарит адронный коллайдер? Зачем нужен был этот рискованный эксперимент, будут решать уже наши потомки.

Ею является поиск путей объединения двух фундаментальных теорий – ОТО (о гравитационном ) и СМ (стандартной модели, объединяющей три фундаментальных физических взаимодействия – электромагнитного, сильного и слабого). Нахождению решения до создания БАКа препятствовали трудности при создании теории квантовой гравитации.

Построение этой гипотезы включает в себя соединение двух физических теорий – квантовой механики и общей теории относительности.

Для этого были использованы сразу несколько популярных и нужных в современной подходов – струнная теория, теория бран, теория супергравитации, а также теория квантовой гравитации. До построения колайдера главной проблемой проведения необходимых экспериментов являлось отсутствие энергии, которую нельзя достичь на других современных ускорителях заряженных частиц.

Женевский БАК дал ученым возможность проведения ранее неосуществимых экспериментов. Считается, что уже в скором будущем при помощи аппарата будут подтверждены или опровергнуты многие физические теории. Одной из самых проблемных является суперсимметрия или теория струн, которая долгое время разделяла физическое на два лагеря – «струнщиков» и их соперников.

Другие фундаментальные эксперименты, проводимые в рамках работы БАК

Интересны и изыскания ученых в области изучения топ- , являющихся самыми кварками и наиболее тяжелыми (173,1 ± 1,3 ГэВ/c²) из всех известных в настоящее время элементарных частиц.

Из-за этого свойства и до создания БАКа, ученые могли наблюдать кварки только на ускорителе «Тэватрон», так как прочие устройства просто не обладали достаточной мощностью и энергией. В свою очередь, теория кварков представляет собой важный элемент нашумевшей гипотезы о бозоне Хиггса.

Все научные изыскания по созданию и изучению свойств кварков ученые производят в топ-кварк-антикварковой паровой в БАКе.

Важной целью женевского проекта также является процесс изучения механизма электрослабой симметрии, которая также связана с экспериментальным доказательством существования бозона Хиггса. Если обозначить проблематику еще точнее, то предметом изучения является не столько сам бозон, сколько предсказанный Питером Хиггсом механизм нарушения симметрии электрослабого взаимодействия.

В рамках БАКа также проводятся эксперименты по поиску суперсимметрии – причем желаемым результатом станет и доказательство теории о том, что любая элементарная частица всегда сопровождается более тяжелым партнером, и ее опровержение.

Зачем физикам нужен новый коллайдер?
Если спросить физиков, какой еще коллайдер им понадобится в самом ближайшем будущем, то, скорее всего, вы получите ответ, что это электрон-позитронный коллайдер.

Зачем вообще нужен новый коллайдер и почему нельзя обойтись одним только БАК?

Ответ на этот вопрос кроется в природе ускоряемых частиц. Протоны, ускоряемые на БАК, участвуют в процессах «сильного» взаимодействия. «Сильное» взаимодействие - это одно из четырех фундаментальных взаимодействий природы наряду со «слабым», электромагнитным и гравитационным взаимодействиями. Как следует из самого названия, «сильное» взаимодействие является самым сильным из всех типов взаимодействий. Его сила намного превосходит силы «слабого» и электромагнитного взаимодействий и уж тем более гравитации, которая (как это ни покажется странным!) является самым слабым из всех существующих взаимодействий. Так почему же большинство людей никогда не слышали о существовании «сильного» взаимодействия, хотя все мы прекрасно знакомы с гравитацией и электричеством? Это объясняется тем, что «сильное» взаимодействие действует только на очень малых расстояниях, сравнимых с размерами атомных ядер. Например, благодаря «сильному» взаимодействию протоны и нейтроны удерживаются вместе внутри атомных ядер. Не будь его, протоны разлетелись бы в разные стороны под действием сил электрического отталкивания. А нейтроны, у которых вообще нет электрического заряда, просто нельзя было бы удержать в составе ядер.

сделать открытие можно, но для того, чтобы точно измерить параметры вновь открытых частиц, нужно что-то еще.

Этим «еще» как раз и являются электрон-позитронные коллайдеры. В отличие от протонов, электроны и позитроны не принимают участия в процессах «сильного» взаимодействия. Их взаимодействие обусловлено электрослабыми процессами. Благодаря специфике этих взаимодействий, сечения рождения новой физики и фонов невелики. По этой причине электрон-позитронный коллайдер сложно использовать для первоначального открытия (хотя и можно). Однако если открытие уже сделано и приблизительно известна масса новых частиц, то. настраивая соответствующим образом энергию сталкивающихся электронов и позитронов, можно многократно увеличить вероятность рождения сигнальных событий, оставляя фоны небольшими. Так что электрон-позитронный коллайдер станет неплохим дополнением к БАК.

Электрон-позитронные коллайдеры
В настоящий момент существуют два конкурирующих проекта будущего электрон-позитронного коллайдера. Название первого проекта — Международный Линейный Коллайдер (ILC), о нем подробно . Предполагается, что энергия столкновений на этом коллайдере составит 500 ГэВ при длине коллайдера 31 км. В проект заложена возможность увеличения энергии столкновений до 1 ТэВ, длина коллайдера при этом будет увеличена до 50 км. Технология, которую предполагается использовать при строительстве ILC, хорошо отработана. Во многом она опирается на технологию, созданную для строительства TESLA. Ускоритель TESLA предполагалось построить на территории научно-исследовательского центра DESY (Гамбург, Германия). По техническим характеристикам он схож с ILC. Строительство было практически одобрено и отменено в самый последний момент из-за возникших финансовых трудностей. ILC — международный проект, страны-участницы которого могут предлагать для строительства собственную территорию. Россия на правах участника ILC предложила строить его в Дубне.

Компактный Линейный Коллайдер, или сокращенно CLIC, - это второй из проектов строительства электрон-позитронного коллайдера. Предполагаемая энергия столкновений составит 3 ТэВ с возможностью последующего увеличения до 5 ТэВ. Длина ускорительного комплекса составит 48,3 км. Энергия CLIC превышает энергию ILC. Это несомненный плюс. Однако технология CLIC пока еще не отработана настолько же тщательно, как для ILC. На это потребуется еще как минимум несколько лет.

На первый взгляд, энергия электрон-позитронного коллайдера гораздо меньше, чем энергия БАК. Однако, в отличие от электронов, которые являются истинно элементарными частицами, протоны обладают внутренней структурой. Они состоят из кварков, удерживаемых вместе силами «сильного» взаимодействия, переносчиками которого являются глюоны. При столкновении протонов в коллайдере столкновения в реальности происходят между входящими в их состав кварками и глюонами, каждый из которых несет на себе лишь небольшую часть полной энергии протонов. При сравнении энергии этих столкновений с энергией электрон-позитронного коллайдера оказывается, что они сопоставимы.

В любом случае окончательное решение о необходимости строительства электрон-позитронного коллайдера и выборе технологии будет принято только после того, как на БАК будут получены результаты.

Почему линейный?

А почему будущий электрон-позитронный коллайдер должен быть линейным? Ведь в этом случае теряется основное преимущество кольцевых ускорителей, в которых частицы ускоряются многократно, проходя одни и те же ускорительные элементы при движении по кругу. Например, ускорение протонов на БАК от энергии в 450 ГэВ до энергии в 7 ТэВ предполагается осуществлять в течение 20 мин. За это время пучок протонов успевает пройти расстояние 36∙10 7 км (что примерно в два раза превышает расстояние от Земли до Солнца). Линейный коллайдер такой длины построить просто невозможно. Так что для постройки линейного коллайдера необходимо существенно увеличить темп ускорения. Даже при этом длина коллайдера составит десятки километров. Еще одним недостатком линейных коллайдеров является возможность установить только одну экспериментальную установку, так как точка столкновения пучков всего одна. На БАК, например, таких точек 4.

Казалось бы, если физикам так нужен электрон-позитронный коллайдер, почему бы не сделать его кольцевым? К сожалению, возможности создания кольцевого электрон-позитронного коллайдера ограничены самой природой. При движении заряженных частиц по кругу возникает синхротронное излучение, в результате чего частицы теряют свою энергию. Этот эффект практически не существенен для протонов (даже при энергиях БАК). Однако электроны, масса которых почти в 2000 раз меньше массы протона, будут терять существенную долю своей энергии вследствие синхротронного излучения. Выход в строительстве линейного коллайдера. Возможность сооружения такого коллайдера была продемонстрирована в Стэнфорде, где находится единственный в мире линейный электрон-позитронный коллайдер.

Мюонный коллайдер
Электрон принадлежит к классу лептонов — группе частиц, участвующих в электрослабых взаимодействиях. Другим представителем этого класса частиц является мюон. Это отрицательно заряженная элементарная частица, масса которой в 210 раз превышает массу электрона, что позволяет не заботиться о синхротронном излучении при ускорении мюонов в кольцевом ускорителе. Мюон был бы идеальной частицей для ускорения, если бы не его маленькое время жизни. Оно составляет всего 1,6 мкс. За это время мюоны необходимо разогнать до релятивистских скоростей. Это представляет серьезные технические трудности. Серьезные усилия по разработке технологии мюонного коллайдера стали прикладываться в середине 1990-х. В настоящее время существует концептуальный проект мюонного коллайдера с энергией в диапазоне 1,5-4 ТэВ. Однако реализация этого проекта, скорее всего, вопрос более отдаленного будущего, чем постройка электрон-позитронного коллайдера.

Возможно, первым шагом на пути создания мюонного коллайдера станет строительство нейтринной фабрики.

Нейтрино - это частица с удивительно маленьким сечением взаимодействия, обладающая вследствие этого огромной проникающей способностью. Например, для того чтобы нейтрино ударилось в преграду из железа, размер этой преграды должен быть сравним с расстоянием от Солнца до Юпитера. Поль Дирак - ученый, впервые предложивший эту частицу теоретически, даже заключил пари, что ее никогда не найдут экспериментально (действительно, как же ее обнаружить, если она ни с чем не взаимодействует?). Однако пари он проиграл. Частица была обнаружена еще при жизни ученого. В настоящий момент свойства нейтрино активно исследуются. Для этого, в частности, используются нейтринные пучки. На первый взгляд кажется невероятным, как вообще можно создать пучок нейтрино? Как заставить частицы, не обладающие электрическим зарядом и крайне неохотно взаимодействующие с веществом, лететь в одном направлении? Для этого используются предварительно ускоренные заряженные частицы (например, мюоны), при распаде дающие нейтрино. Если множество мюонов летят в одном направлении, то и образовавшиеся нейтрино также полетят в одном направлении. Вот вам и нейтринный пучок! Беда только в том, что живут мюоны крайне недолго, и за время жизни их не получается накопить в большом количестве. Точнее, не получалось. Этот пробел призван заполнить проект нейтринной фабрики, в основу которой положено создание «накопительных» мюонных колец, что в свою очередь является первым шагом на пути создания мюонного коллайдера.

Следующий адронный?
А будет ли построен следующий адронный коллайдер, превосходящий по энергии БАК? Ведь рано или поздно эпоха точных измерений (для которых в первую очередь необходим линейный электрон-позитронный коллайдер) будет закончена, и снова понадобится коллайдер для исследования новых диапазонов энергий. Такой проект существует. В 2010 году CERN объявил о планах построить в туннеле БАК (после прекращения его работы) адронный коллайдер с энергией 35 ТэВ.

Предел технологии
Каждое следующее поколение ускорителей становится все больше и все дороже. Огромная стоимость и сложность конструкции во многом объясняются тем, что существующая технология ускорения достигла своего предела. Так, внутри нового поколения линейных ускорителей необходимо поддерживать огромные ускоряющие поля. Однако при увеличении напряженности поля внутри ускоряющих элементов возникают пробои, приводящие к их разрушению. Чтобы справиться с этой проблемой, применяются специальные конструкции и дорогостоящие материалы. Для ILC и CLIC с большим трудом удалось создать ускоряющие градиенты порядка 100 МэВ/м.

Сильно увеличить это значение вряд ли удастся. Это определяет предел технологии для линейных коллайдеров.

В кольцевых коллайдерах ускоряющие градиенты не являются проблемой, из-за того что частицы можно многократно ускорять при движении по кругу.

Однако чем больше энергия ускоряемых частиц, тем сложнее их удержать на кольцевой траектории внутри ускорителя. Для этого используются сильные магнитные поля. На БАК магнитное поле 8,33 Тесла. На следующем адронном коллайдере, который планируется разместить в тоннеле БАК, после того как БАК завершит свою работу (речь об этом шла чуть выше), магнитное поле составит около 20 Тесла. Это почти предел современной технологии. Другой путь - увеличивать размеры ускоряющего кольца, в результате кривизна траектории частиц уменьшается, так что удерживать их внутри коллайдера становится проще. Однако, учитывая то, что размеры современных коллайдеров и так составляют десятки километров, дальнейшее их увеличение кажется весьма проблематичным и трудоемким делом.

Из-за гигантской стоимости новых ускорителей вопросы об их строительстве обсуждаются на общегосударственном уровне. И даже становятся разменной картой в руках политиков. Стоит вспомнить, например, о проекте SSC (Supercondacting Super Collider).

Этот адронный коллайдер с энергией пучков 20x20 ТэВ предполагалось построить в США. Да-да, это не опечатка! Суммарная энергия сталкивающихся пучков должна была составить 40 ТэВ.

Это почти в три раза превышает максимальную энергию БАК, которая будет достигнута только после проектных работ по усовершенствованию коллайдера, намеченных на 2012 год. Длина ускорительного кольца SSC должна была составить 87,1 км (длина БАК 27км). Строительство должно было завершиться в 1999 году. Реализация проекта началась. Было прорыто 22,5 км тоннеля, залито 17 шахт. К сожалению, впоследствии проект был закрыт.

Не говорит ли все это о конце ускорительной физики? Строительство новых коллайдеров с использованием существующих технологий становится все более затратным. А на реализацию проектов уходят десятилетия. Так, впервые о постройке БАК заговорили в 1984 году, а официальный запуск коллайдера состоялся только в конце 2009 года. Может быть, недалек тот день, когда построить новый коллайдер будет уже не по силам? Возможный выход из этой ситуации состоит в развитии новых технологий.

Плазменные ускорители
Одной из наиболее перспективных технологий является метод плазменного ускорения. В чем его суть? Как было сказано выше, современная технология ускорения практически достигла своего предела. Дальнейшее увеличение ускоряющих полей приводит к возникновению пробоев и разрушению стенок ускоряющих элементов. Но если так, то может быть, вообще можно обойтись без стенок? Большие электрические поля можно создать, например, в плазме. Плазма является газом, состоящим из положительно заряженных ионов и отрицательно заряженных электронов. Обычно плазма электрически нейтральна, так как электроны и ионы равномерно распределены в объеме плазмы. А что если каким-то образом их разделить? Тогда возникшие электрические поля можно использовать для ускорения частиц. Но как добиться такого разделения?

Это можно сделать с помощью импульсного лазера или пучка электронов.

%Сгусток электронов, пролетая через плазму, расталкивает находящиеся на пути электроны плазмы.

Ионы при этом практически не смещаются, в силу того что их масса намного превышает массу электронов. В результате в месте, через которое только что прошел пучок электронов, на какое-то очень непродолжительное время образуется область, заполненная положительным зарядом. Сразу же за ней идет область, в которой электроны плазмы уже вернулись на свои места, сомкнувшись за прошедшим пучком. На границе между этими областями (в очень небольшом объеме) возникают огромные электрические поля. Этот участок передвигается вслед за пучком электронов, а частица, попавшая в этот участок, будет испытывать постоянное ускорение.

По-английски эта технология называется wakefield acceleration, т. е. буквально «ускорение в кильватерной струе». Эта аналогия не случайна. Представьте себе серфера, скользящего на доске по гребню волны. Если это естественная волна, то удовольствие серфера длится недолго (до тех пор, пока волна не ослабеет). Но что, если эту волну постоянно подпитывать? Например, впереди может идти моторная лодка, создавая за собой «кильватерную струю». Серфер может скользить на гребне этой волны. При этом ему даже не понадобится веревка, чтобы держаться за лодку. Нужна только волна.

Описанная идея не нова. Она была впервые сформулирована еще в работах Будкера и Векслера в середине 50-х годов XX века. Однако долгое время оставалась невостребованной из-за большого количества технических проблем и большого резерва обычной технологии ускорения. В настоящий момент технология плазменного ускорения активно развивается. Потенциал огромен! Было показано, что ускоряющие градиенты могут превышать 100 ГэВ/м. Это в 1000 раз больше, чем у CLIC (самого мощного из разрабатываемых электрон-позитронных коллайдеров). С таким темпом ускорения для того чтобы разогнать протоны до энергии БАК, понадобится ускоритель длиной всего в 70 метров (вместо 27 км). К сожалению, не все так просто. И на пути создания такого рода коллайдеров предстоит еще решить огромное количество технических проблем. Для того чтобы использовать создаваемые пучки в экспериментах, необходимо, чтобы энергия частиц в пучке имела примерно одинаковое значение. Долгое время этого не удавалось добиться. Энергия ускоряемых частиц оказывалась разбросанной в чрезвычайно широком диапазоне. Однако в последние годы в решении этого вопроса наметился серьезный прогресс. Другая проблема состоит в масштабировании технологии.

Как поддерживать большой ускоряющий градиент на больших расстояниях?

Ведь изначально такие огромные темпы ускорения удавалось создавать на расстояниях, не превышающих нескольких миллиметров. В решении этого вопроса также есть определенные успехи. Чтобы продемонстрировать принципиальную возможность поддерживать большие градиенты на сравнительно больших расстояниях, был проведен эксперимент. В конце Стэнфордского Линейного Коллайдера (SLC), ускоряющего электроны до энергии 42 ГэВ, была поставлена дополнительная ускорительная секция, основанная на технологии плазменного ускорения. Длина секции составляла около 85 см. При этом энергию электронов там удалось удвоить (максимальная энергия электронов составила 857 ГэВ). Это тем более фантастично, что для того, чтобы разогнать электроны до 42 ГэВ, на самом коллайдере требуется 3 км.

Несмотря на такие успехи, для создания многотэвных коллайдеров, основанных на данной технологии, наверное, понадобятся несколько десятков лет. А вот маленькие ускорители с энергией около 1 ГэВ, умещающиеся на столе, могут появиться в ближайшие несколько лет. Такие ускорители могут быть, например, использованы для создания компактных источников синхротронного излучения.

А что еще?

Рассказывая об ускорителях будущего, я, к сожалению, не смог упомянуть про множество других проектов, целью которых является не покорение новых рубежей энергии, а создание высокоинтенсивных пучков для исследования редких процессов (например, проекты SuperKEKB или SuperB). Не упомянул я и о проектах ионных пучков, таких как создание большого ускорительного комплекса FAIR, модернизации ускорителя RHIC или проекте нового ионного коллайдера NICA в Дубне. Пожалуй, сложно перечислить все в короткой лекции. Хочется надеяться, что большинство этих проектов будет реализовано.

Пожалуй, напишу как БАК работает вообще.

Вообразите себе обычный баллон со сжатым водородом. Вроде бы мелочь, но именно с него начинается работа самого большой ускорителя элементарных частиц в мире.

Атомы водорода поступают в камеру подачи линейного ускорителя строго отмеренными порциями. Там от от них отделяют электроны(отрицательно заряженные элементарные частицы) оставляя только ядра водорода- протоны (положительно заряженные элементарные частицы). Как раз это положительный заряд позволяет давать им ускорение при помощи электрического поля. Дальше их сталкивают друг с другом, чтобы выделить большой объём энергии. Кстати, эта модель повторяет те действия, которые происходили в момент Большого Взрыва. После протоны отправляют в линейный ускоритель. На выходе отсюда протоны будут двигаться со скоростью, равной 1/3 скорости света. Это всё первый этап.

Теперь они готовы к второму этапу- попаданию в бустерЧастицы разделяют на 4 части, что максимально увеличить плотность их потока. Каждая часть поступает в отдельное кольцо бустера. Длина каждого кольца 137 м. Здесь применено круговое движение, поскольку линейное уже не эффективно. Чтобы придать большую скорость, частицы проходят по кругу много раз, причём на них воздействуют пульсирующим электрическим полем. Нужное направление регулируют магнитами, мощное излучение удерживают их на этой траектории. Здесь их разгоняют до 91,6% скорости света, собирая их в плотный пучок.

После этого частицы из всех четырёх колец собираются вместе и поступают в фотонный синхротрон. Это наша третья ступень. Что же будет происходить с двумя такими порциями протонов? Длина синхротрона 628 м. Это расстояние протоны проходят за 1,2 секунды разгоняясь до 99.9% скорости света. Классно, неправда ли? Именно здесь достигается точка перехода. К энергии движения частиц прибавляется энергия электрического поля, но дальше частицы разгонятся почти не могут, запрещено природой.Но за счёт этого увеличивается масса протонов. Поэтому они не разгоняются, а становятся тяжелее. Кинетическая энергия(грубо, говоря, энергия движения, которая учитывает массу/скорость) измеряется в электрон вольтах. На этом этапе энергия каждой частицы равняется примерно 25 млрд. эВ, а масса протонов в 25 раз тяжелее, чем в состояние покоя.

И так мы плавно перешли уже к четвёртая стадия- протонный супер синхротрон. Огромное 7-ми километровое кольцо. Его задача принять протоны с таким запасом энергии и увеличить его до 450 млрд.

Через некоторое время частицы будут готовы к перемещению в Большой Адронный Коллайдер. Это самая интересная, пятая часть. Расположен он на границе Франции и Швейцарии, в Европейских Альпах. БАК расположен глубоко под землёй и растянут на 27 км. В нём проложены 2 вакуумных трубы. По ним в противоположном направлении движутся пучки протонов. С помощью специальных устройств новые порции протонов поступают так, чтобы не мешать уже загруженным. Эти трубы пресекаются в четырёх точках, где стоят детекторы. Здесь протоны пересекаются друг с другом. При столкновения энергия каждого пучка увеличивается в двое. Детекторы позволяют учёным следить за изменениями в местах столкновений. За полчаса в БАК поступают около 2800 порций частиц. Все это время коллайдер придаёт нашим частицам энергии.Каждую секунду, протоны проходят это круг более 11 тысяч раз (27км, между прочим!), постоянно получай импульсы электрического поля. Энергия каждого протона составляет уже 7 тера эВ, а масса в 7000 раз больше состояния покоя. Круговое движение сохраняет всё тоже магнитное поле. Оно так велико, что его электро магниты должны выдерживать электро ток силой в 12 тысяч ампер. А всё благодаря прекрасному охлаждению, в результате которого магниты становятся сверх проводимыми.

Теперь протоны готовы к столкновению. Магниты регулируют нужную траекторию. Общая энергия двух сталкивающихся протонов равна 14 тера эВ. Это всплеск наблюдается в течении 2-ух секунд после столкновения. Траектория выделившихся в результате частиц анализируются компьютерами, к которым подключены детекторы.