Движение планеты Земля. Дыхание планеты и его цикличность

Изменение космической погоды: из одной крайности в другую.

Примерно один раз в 11 лет газеты сообщают о том, что активность Солнца достигла своего апогея во время так называемого “солнечного цикла”, т.е. естественного изменения активности нашего светила. В это время ученые обычно фиксируют увеличение числа солнечных пятен и протуберанцев, потенциально несущих опасность для землян, а интенсивность полярных сияний возрастает.

Повышенная солнечная активность называется “солнечным максимумом”. По прогнозам, в нынешнем году следующий максимум придется на август. Но оказывается, по мнению специалистов, занятых изучением Солнца, повышенное внимание следует уделять не только солнечным максимумам, но и более спокойному периоду солнечной активности - солнечному минимуму, во время которого активность нашего светила не столь велика.

“Во время солнечного минимума влияние космической погоды на нас отнюдь не прекращается, а всего лишь видоизменяется. В результате, мы сталкиваемся с другой крайностью,” - заявляет астрофизик Мадхулика Гухатхакурта (Madhulika Guhathakurta). Она возглавляет проект НАСА “Жизнь со звездой” (“Living With a Star”), в номере “Space Weather” за 19 марта ею в соавторстве была опубликована статья, посвященная солнечной активности.

Сторонники Гухатхакурты считают, что периодические изменения активности Солнца, представляющие собой колебания между солнечным максимумом и минимумом, - это не просто чередование фаз. Каждая из них обладает своей спецификой и может быть по-своему вредоносной.

Солнце является постоянным источником радиации, выбрасывающим потоки заряженных частиц в межпланетное пространство солнечной системы. Космическая погода в околоземном пространстве формируется под влиянием потоков плазмы, магнитных полей и элементарных частиц, устремленных в околоземное пространство.

Во время пика солнечной активности от поверхности солнца в результате вспышек отделяются огромные массы солнечного вещества, извергая в космическое пространство потоки заряженных частиц и радиацию.

И когда все эти массы солнечного вещества сталкиваются с Землей, то в результате спутники могут выйти из строя, а радиосвязь может быть нарушена, что представляет несомненную опасность для космонавтов. Во время гигантских солнечных бурь могут быть повреждены линии электропередач и другие объекты инфраструктуры, расположенные на Земле.

Кроме всего прочего, увеличение интенсивности ультрафиолетового излучения во время солнечного максимума разогревает земную атмосферу, в результате чего ее объем увеличивается, а это, в свою очередь, ведет к увеличению силы лобового сопротивления, действующей на спутники и, в частности, на Международную космическую станцию, тем самым все сильнее притягивая эти объекты к земле.

Для специалистов ЦУП данный факт, конечно же, мало приятен, поскольку из-за этого приходится вновь и вновь “поднимать” спутники и МКС на расчетные орбиты.

Положительный эффект солнечных максимумов заключается в том, что весь космический мусор, заполонивший околоземное пространство, тоже притягивается к Земле. А поскольку частицы мусора сравнительно малы, то, двигаясь под действием силы тяготения, они сгорают в плотных слоях атмосферы, а околоземное пространство очищается.

Теперь возьмем противоположную фазу - солнечный минимум. Здесь все происходит по-другому, и возникают свои опасности: как только солнечный ветер утихает, увеличивается интенсивность потока галактических космических лучей, проникающих в солнечную систему.

В этом случае потоки элементарных частиц с высокой энергией летят на огромных скоростях и, попадая в организм человека, разрушают молекулы ДНК, тем самым увеличивая у астронавтов риск заболевания раком. Именно это является одним из основных препятствий, которое сильно мешает осуществлению недавно заявленного проекта - полет человека на Марс, в соответствии с которым в 2018 году во время солнечного минимума планируется отправить на Красную планету двух землян.

Словом, если космонавты и специалисты ЦУПа считают, что солнечный минимум - время спокойное, то, по мнению г-жи Гухатхакурты, они очень сильно в этом заблуждаются.

Во время солнечного минимума происходит снижение интенсивности ультрафиолетового излучения, в результате чего атмосфера Земли охлаждается, а ее объем уменьшается. Правда, это совсем неплохо для спутников, ведь действующие на них силы гравитации слабеют. Однако отрицательное последствие солнечного минимума состоит в том, что возрастают объемы космического мусора в околоземном пространстве.

Словом, влияние минимумов и максимумов имеет сложный, неоднозначный характер. Именно по этой причине Гухатхакурта вместе с соавтором статьи сравнивает солнечную цикличность с такими явлениями, как Эль-Ниньо и Ла-Нинья. Эти климатические явления также называются “южная осцилляция” в Тихом океане, причем характерное время данной осцилляции - от двух до семи лет.

Подобно солнечным максимуму и минимуму, Эль-Ниньо и Ла-Нинья характеризуются специфическим набором свойств - и положительных, и отрицательных. Так, во время сезона Эль-Ниньо на западное побережье Южной Америки обрушиваются проливные дожди и даже возникают наводнения, в то время как в Новой Англии стоит относительно теплая и сухая погода, а для сельского хозяйства Перу и Эквадора Эль-Ниньо - настоящий подарок. Теперь возьмем другой крайний случай “южной осцилляции” - сезон Ла-Нинья.

В это время в западной части Тихого океана устанавливается очень сухая погода, в Южной Америке возникают наводнения, а в северной части Северной Америки наступает мягкое лето.

Впервые Гухатхакурта решила серьезно заняться исследованием солнечных циклов во время последнего из минимумов солнечной активности, который был зафиксирован в промежутке между 2008 и 2009 годами. В то время количество солнечных пятен было минимальным, однако интенсивность потока космических лучей наоборот достигла самого высокого из уровней, зафиксированных с момента начала космической эры; верхние слои земной атмосферы сильно ослабели, а количество космического мусора увеличилось. “Звучит все это как-то устрашающе, не так ли?” - спрашивает Гухатхакурта.

Как сказал Роберт Ратледж, возглавляющий бюро прогноза погоды Национальной метеорологической службы Космического центра прогнозирования погоды (NOAA), подход к исследованию космической погоды, предложенный Гухатхакуртой, крайне интересен. “Именно так и нужно проводить анализ. И в этом направлении еще многое предстоит сделать”, - продолжает г-н Ратледж.

Большинство людей склонны считать, что на человека влияют лишь солнечные бури, рекордное количество которых наблюдается, как правило, во времена солнечных максимумов. Однако не меньший ущерб может нанести и солнечный минимум, т.е. минимальный уровень солнечной активности, в результате которого может пострадать работа спутников.

Поскольку самый последний солнечный минимум был очень длительным, а солнечная активность в это время была самой низкой, то, по словам Рутледжа, “некоторые модели, описывающие лобовое сопротивление [спутников] в земной атмосфере, начали давать сбой. И этого никто не ожидал”.

ИноСми по материалам

Солнце является центром нашего мира. Миллиарды лет оно удерживает планеты около себя и обогревает их. Земля остро чувствует изменения солнечной активности, проявляющиеся в настоящее время главным образом в виде 11-летних циклов. Во время всплесков активности, учащающихся в максимумах цикла, в короне Солнца рождаются интенсивные потоки рентгеновского излучения и энергичных заряженных частиц – солнечных космических лучей, а также происходят выбросы огромных масс плазмы и магнитного поля (магнитных облаков) в межпланетное пространство.

В XX веке земная цивилизация незаметно переступила в своём развитии очень важный рубеж. Техносфера – область человеческой активности – расширилась далеко за пределы границ естественной среды обитания – биосферы. Эта экспансия носит как пространственный – за счёт освоения космического пространства, так и качественный характер – за счёт активного использования новых видов энергии и электромагнитных волн. Но всё равно для инопланетян, смотрящих на нас с далёкой звезды, Земля остаётся всего лишь песчинкой в океане плазмы, заполняющем Солнечную систему и всю Вселенную, и нашу стадию развития можно сравнить скорее с первыми шагами ребёнка, чем с достижением зрелости. Новый мир, открывшийся человечеству, не менее сложен и, как, впрочем, и на Земле, далеко не всегда дружественен. При его освоении не обошлось без потерь и ошибок, но мы постепенно учимся распознавать новые опасности и преодолевать их. А опасностей этих немало. Это и радиационный фон в верхних слоях атмосферы, и потеря связи со спутниками, самолётами и наземными станциями, и даже катастрофические аварии на линиях связи и электропередач, происходящие во время мощных магнитных бурь.

1. ОБЩИЕ СВЕДЕНИЯ О СОЛНЕЧНО – ЗЕМНЫХ СВЯЗЯХ

солнечная активность космический ионосфера

Солнечная активность оказывает широкое воздействие на процессы, происходящие на нашей планете. Солнечная активность дает о себе знать на Земле двумя типами излучения: электромагнитным (от гамма – лучей с длиной волны примерно 0,01А до километровых радиоволн) и корпускулярным (потоки заряженных частиц, имеющие плотность от нескольких до десятков частиц в 1 см3 с энергиями от сотен до миллионов эВ). На пути к Земле они встречают многочисленные преграды, главными из которых являются магнитные поля в межпланетном и околоземном пространстве. Это обстоятельство сказывается на них по – разному. Электромагнитное излучение беспрепятственно проникает в верхние слои земной атмосферы, где оно в основном поглощается и преобразуется. Поверхности Земли достигает лишь радиация Солнца в ближнем ультрафиолете и видимой области спектра, интенсивность которой почти не зависит от солнечной активности, и в узком участке радиоспектра (от примерно 1 мм до 30 м), которая очень слаба. Основным объектом приложения воздействия этого типа солнечного излучения являются ионосфера, своеобразное зеркало, отражающее радиоволны к Земле, и нейтральная атмосфера Земли. Что же касается корпускулярного излучения Солнца, то оно испытывает на себе воздействие межпланетного магнитного поля и геомагнитного поля в такой степени, что попадает в земную атмосферу в совершенно неузнаваемом виде. И уже только после этого оно взаимодействует с частицами ионосферы и нейтральной атмосферы Земли. Верхние слои земной атмосферы легко поддаются воздействию солнечной активности, и поэтому иногда характеристики происходящих в них изменений даже используют в качестве косвенных индексов солнечной активности. Совсем иначе обстоит дело с воздействием солнечной активности на тропосферу, нижнюю часть земной атмосферы, которая определяет климат и погоду на Земле. До сравнительно недавнего времени многие очень метеорологи утверждали, что погода на Земле обусловлена чем угодно, только не солнечной активностью.

Это явилось своеобразной реакцией на другую крайнюю точку зрения, заключавшуюся в том, что любое нарушение погодных условий в любом месте на Земле может быть вызвано проходящей в это время по диску Солнца активной областью. В качестве главного аргумента против такого воздействия выдвигалась большая инерция земной атмосферы и ее практически полная изолированность от внешних воздействий, тем более таких слабых в энергетическом отношении, как солнечная активность. Кроме того, отмечалась неустойчивость обнаруженных статистических связей, а иногда даже полное их отсутствие. Тем не менее детальный анализ проблемы Солнце – тропосфера привел к заключению, что солнечная активность определенно воздействует и на нижнюю часть атмосферы нашей планеты. Только оно сказывается лишь в неустойчивых областях. Еще более трудным для решения выглядит вопрос о воздействии солнечной активности на биосферу Земли.

Если в проблеме Солнце – тропосфера ни один из предложенных физических механизмов пока не получил всеобщего признания, то здесь вообще дело к настоящему времени не продвинулось дальше обнаружения статистических связей между характеристиками солнечной активности и деятельностью живых организмов, в том числе человека, и некоторых соображений о возможной физической природе такого воздействия. К тому же и такие исследования сильно затруднены созидательной деятельностью человека, которая нередко приводит к уменьшению или полному исчезновению ранее отмечавшихся нежелательных процессов (например, некоторых видов инфекционных заболеваний). Тем не менее в последние годы все больше исследователей склоняется к мнению, что воздействие солнечной активности на биосферу Земли определенно существует, причем оно бывает как непосредственным, так и связанным с изменениями погоды и климата.

2. ВЛИЯНИЕ РАДИАЦИИ

Пожалуй, одним из наиболее ярких проявлений враждебности космического пространства к человеку и его творениям, кроме, конечно, почти полного по земным меркам вакуума, является радиация – электроны, протоны и более тяжёлые ядра, разогнанные до огромных скоростей и способные разрушать органические и неорганические молекулы. О вреде, который радиация наносит живым существам, хорошо известно, но достаточно большая доза облучения (то есть количество энергии, поглощённой веществом и пошедшей на его физическое и химическое разрушение) может выводить из строя и радиоэлектронные системы.

Электроника страдает также и от „единичных сбоев“, когда частицы особо высокой энергии, проникая глубоко внутрь электронной микросхемы, изменяют электрическое состояние её элементов, сбивая ячейки памяти и вызывая фальшивые срабатывания. Чем сложнее и современнее микросхема, тем меньше размеры каждого элемента и тем больше вероятность сбоев, которые могут привести к её неправильной работе и даже к остановке процессора. Эта ситуация по своим последствиям схожа с внезапным зависанием компьютера в разгар набора текста, с той лишь разницей, что аппаратура спутников, вообще говоря, предназначена для автоматической работы. Для исправления ошибки приходится ждать следующего сеанса связи с Землёй при условии, что спутник будет способен выйти на связь.

Первые следы радиации космического происхождения на Земле были обнаружены австрийцем Виктором Гессом ещё в 1912 году. Позднее, в 1936 году, за это открытие он получил Нобелевскую премию. Атмосфера эффективно защищает нас от космического излучения: поверхности Земли достигает совсем не много так называемых галактических космических лучей с энергиями выше нескольких гигаэлектронвольт, рождённых за пределами Солнечной системы. Поэтому изучение энергичных частиц за пределами атмосферы Земли сразу стало одной из основных научных задач космической эры. Первый эксперимент по измерению их энергии был поставлен группой советского исследователя Сергея Вернова в 1957 году. Действительность превзошла все ожидания - приборы зашкалило. Спустя год руководитель аналогичного американского эксперимента Джеймс Ван Аллен понял, что это не сбой в работе прибора, а реально существующие мощнейшие потоки заряженных частиц, не относящихся к галактическим лучам. Энергия этих частиц недостаточно велика, чтобы они могли достигать поверхности Земли, но в космосе этот „недостаток“ с лихвой компенсируется их количеством. Основным источником радиации в окрестностях Земли оказались высокоэнергичные заряженные частицы, „живущие“ во внутренней магнитосфере Земли, в так называемых радиационных поясах.

РИС. 1 В геомагнитном поле заряженные частицы с определёнными скоростями могут захватываться в так называемые „магнитные бутылки“: траектории электронов и протонов (1) длительное время „привязаны“ к силовым линиям (2), многократно отражаясь от их околоземных концов (3) и медленно дрейфуя вокруг Земли (4).

Известно, что почти дипольное магнитное поле внутренней магнитосферы Земли создаёт особые зоны „магнитных бутылок“, в которых заряженные частицы могут „захватываться“ на длительное время, вращаясь вокруг силовых линий. При этом частицы периодически отражаются от околоземных концов силовой линии (где магнитное поле увеличивается) и медленно дрейфуют вокруг Земли по окружности. В наиболее мощном внутреннем радиационном поясе хорошо удерживаются протоны с энергиями вплоть до сотен мегаэлектронвольт. Дозы облучения, которые можно получить при его пролёте, настолько велики, что долго в нём рискуют держать только научно – исследовательские спутники. Пилотируемые корабли прячутся на более низких орбитах, а большинство спутников связи и навигационных космических аппаратов находится на орбитах выше этого пояса. Наиболее близко к Земле внутренний пояс подходит в точках отражения. Из – за наличия магнитных аномалий (отклонений геомагнитного поля от идеального диполя) в тех местах, где поле ослаблено (над так называемой бразильской аномалией), частицы достигают высот 200–300 километров, а в тех, где оно усилено (над восточно – сибирской аномалией), - 600 километров. Над экватором пояс отстоит от Земли на 1500 километров. Сам по себе внутренний пояс довольно стабилен, но во время магнитных бурь, когда геомагнитное поле ослабевает, его условная граница спускается ещё ближе к Земле. Поэтому положение пояса и степень солнечной и геомагнитной активности обязательно учитываются при планировании полётов космонавтов и астронавтов, работающих на орбитах высотой 300–400 километров.

Биосфера – живая открытая система. Она обменивается энергией и веществом с внешним миром. В данном случае внешний мир – это безбрежное космическое пространство.

Извне на Землю приходят солнечное и электромагнитное излучение; так называемый солнечный ветер, представляющий собой сгустки плазменных облаков, непрерывно испускаемые Солнцем с переменной интенсивностью; галактические и солнечные космические лучи, а также потоки метеоритов.

От Земли в космос уходит собственное тепловое излучение, часть обратного рассеянного излучения Солнца (альбедо), а также потоки вещества верхней атмосферы Земли.

Таким образом, взаимодействие «биосфера–космос» представлявляет собой сложную динамическую систему, находящуюся в состояню подвижного равновесия.

Пограничная область между системой «Земля–космос» проходит на расстоянии 50–60 тыс. км над поверхностью Земли. Именно на такое расстояние простирается граница геомагнитного поля магнитосферы Земли. Процессы взаимодействия магнитосферы с веществом солнечной плазмы – солнечным ветром и космическими лучами – изучаются, и исследуется в рамках магнитной гидродинамики – современной космической науки, совместно учитывающей сложные явления пограничной среды в соответствии с уравнениями электромагнитного поля Максвелла, с одной стороны, и уравнениями гидродинамики, с другой.

В свое время академик В.В. Вернадский подчеркивал, что существует тесная взаимосвязь между явлениями, происходящими на Земле, и процессами космического порядка. Сейчас уже нет никаких сомнений в том, что среда нашего обитания – не только Земля и даже не только Солнечная система, но и вся окружающая нас Вселенная, неотъемлемой частью которой мы являемся.

В связи с этим при изучении земных явлений необходимо исходить из системного подхода в науках о Земле, что диктуется не только обнаружением тех или иных конкретных связей между земными и космическими явлениями, но и общими принципами современного естествознания. Целостное восприятие мира – необходимая черта современного стиля научного мышления.

Эпоху, в которой мы живем, по праву называют космической эрой, эпохой освоения космоса. И дело не только в осуществлении космических полетов и успешном развитии космической техники. Освоение космоса, все более глубокое познание закономерностей космических явлений, широкое вовлечение космоса в сферу человеческой практики – настоятельная потребность современного этапа в развитии земной цивилизации.

Становится ясно, что само возникновение и существование биосферы и человека тесно связано с физическими условиями во Вселенной, а также с особенностями течения физических процессов на Земле, в непосредственно окружающей нас области космоса и во Вселенной в целом.

Земные явления бесчисленными нитями связаны с физическими процессами, протекающими в космическом пространстве. Во-первых, во многих земных явлениях находят свое отражение общие закономерности космического порядка. Во-вторых, существует целый ряд непосредственных связей и зависимостей, определяющих влияние тех или иных космических факторов на нашу планету, в том числе и на биосферу. Таких факторов очень много.

Например, в результате вращения Земли дважды в сутки наблюдаются морские приливы и отливы под действием гравитационного притяжения Луны. Ясно, что это явление важно для обитателей приморских районов Земли.

Положение Земли в пространстве относительно Солнца приводит к суточной смене дня и ночи и естественной смене времен года в разных районах Земли, что влияет на все стороны жизни биосферы.

Важную роль сыграли факторы космического порядка в процессе становления жизни на Земле. В частности, многие характерные особенности живых организмов, в том числе и организма человека, непосредственно связаны с величиной силы тяжести на Земле, характером солнечного излучения, положением нашей планеты в Солнечной системе, а также положением Солнечной системы в нашей Галактике.

Так, например, строение органов зрения человека и животных обусловлено тем, что Солнце интенсивно излучает в оптическом диапазоне и это излучение проходит сквозь атмосферу Земли. Не случайно и то, что человеческий глаз наиболее чувствителен к желто-зеленым лучам, ибо именно эти лучи в составе солнечного света имеют наибольшую интенсивность.

Есть основания предполагать, что солнечная деятельность оказывает влияние на биосферу нашей планеты и в настоящее время.

Так, подмечен целый ряд статистических зависимостей, которые обнаруживают связь колебаний солнечной активности с эпидемическими, сердечно-сосудистыми и нервно-психическими заболеваниями, обострением хронических болезней, урожайностью и ростом годовых колец у деревьев. В связи с этим возникла новая область науки – гелиобиология, главная задача которой – выяснить физические механизмы воздействия Солнечной системы на процессы, протекающие в биосфере. Это одна из актуальных проблем современного естествознания, имеющая огромное практическое значение для человечества.

Изучение космического пространства с помощью спутников и космических аппаратов в последние десятилетия позволило существенно продвинуться в исследовании механизмов солнечно-земных связей, в первую очередь в выяснении целого ряда циклических процессов на Солнце и их проявлений в земных условиях. Прежде всего, речь идет о 27-дневных (в среднем) ритмах, связанных с вращением Земли относительно своей оси, с 11-летним (в среднем) и 22-летним (в среднем) циклами солнечной активности, проявляющимися более или менее синхронно в длительных временных рядах по большому числу визуальных характеристик Солнца в виде солнечных пятен, факелов, флокулл, хромосферных вспышек и др.

Современная гелиобиология подтверждает факт влияния ритмов Солнца на земные процессы, однако выясняется, что механизмы такого влияния являются гораздо более сложными, чем это представлялось в первой половине XX в. основателям космической биологии В.В. Вернадскому и А.Л. Чижевскому .

В то же время целый ряд конкретных вопросов солнечно-земных связей уже нашел решение как с точки зрения изучения материальных носителей таких связей (главным образом солнечных корпускулярных потоков), так и самих их механизмов. В частности, к ним относятся:

Вопросы изучения причин вариации магнитного поля Земли, в том числе и появления магнитных бурь на Земле;

Резкие изменения состояния ионосферы, нарушающие процесс распространения радиоволн на Земле;

Появление полярных сияний, земных электрических токов, процессов изменения атмосферного электричества и др.

Ясно, что необходимо дальнейшее изучение влияния всех установленных геофизических явлений на биосферу, в том числе и организм человека.

Человеческий организм – сложная и высокосовершенная саморегулирующаяся система, которая стремится к равновесию с окружающей средой, включающей в себе факторы космического порядка. Всякое нарушение данного равновесия, связанное с изменением внешних условий, вызывает соответствующую перестройку в деятельности организма.

Эту закономерность использует, например, современная медицина в лечебных целях. Воздействуя на организм климатическими, бальнеологическими и другими природными факторами, врачи сознательно добиваются таких целенаправленных изменений, которые повлекли бы за собой ликвидацию определенных заболеваний. Возможности подобного метода еще далеко не исчерпаны. Дальнейшее изучение влияния различных природных, в том числе и космических, факторов на живые организмы открывает новые пути избавления человека от различных недугов.

В последние годы идей о наличии многосторонних космо-земных связей подтверждены в работах по влиянию геомагнитного поля и солнечной активности на ритмы артериального давления, частоту сердечно-сосудистых заболеваний, поведение эритроцитов, свертываемость крови, содержание гемоглобина, гомеостаз живых организмов, почвообразование, барическое давление и циркуляцию атмосферы, осадки, генезис рельефа Земли и т.д. Таким образом, периодичность солнечной активности является одним из важнейших факторов, влияющих на жизнь на Земле.

Биосфера и ноосфера

Факторы эволюции и этапы развития биосферы. Эволюция биосферы на протяжении большей части ее истории осуществлялась под влиянием двух главных факторов:

1) естественных геологических и климатических изменений на планете;

2) изменений видового состава и количества живых существ в процессе биологической эволюции.

На современном этапе в третичном периоде основным фактором, определяющим эволюцию биосферы, стало развивающееся человеческое общество.

Эволюция органического мира прошла несколько этапов. Первый этап – возникновение первичной биосферы с присущим ей биотическим круговоротом, второй –усложнение структуры биотического компонента биосферы в результате появления многоклеточных организмов. Эти два этапа эволюции, протекавшие в соответствии с чисто биологическими закономерностями жизнедеятельности и развития, получили название биогенеза.

Третий этап связан с возникновением человеческого общества. Разумеется, по своим намерениям деятельность людей в масштабе биосферы способствует превращению последней в ноосферу. На данном этапе эволюция протекает под определяющим воздействием человеческого сознания и связанной с ним производственной (трудовой) деятельности людей, что соответствует периоду ноогенеза.

Представления о том, что живые существа взаимодействуют с внешней средой, изменяя ее, возникли давно. Этому способствовали наблюдения за природными явлениями. В начале XVII в. зачаточные представления о биосфере имели место в трудах голландских ученых Б. Варениуса и X. Гюйгенса .

Век спустя французский естествоиспытатель Ж. Кювье заметил, что живые организмы могут существовать только путем обмена веществ с внешней средой. Другие исследователи – французский химик Ж.Б. Дюма и немецкий химик Ю. Либих выяснили значение зеленых растений в газовом обмене земного шара и роль почвенных растворов в питании растений. Впоследствии многие ученые изучали взаимоотношения организмов со средой их обитания, что в итоге привело к современному пониманию биосферы.

В частности, Ж.Б. Ламарк в своей книге «Гидрогеология» посвятил целую главу влиянию живых организмов на преобразование земной поверхности. Он писал:

В природе существует особая сила, могущественная и непрерывно действующая, которая обладает способностью образовывать сочетания, умножать их, разнообразить их. Влияние живых организмов на вещества, находящиеся на поверхности земного шара и образующие его внешнюю кору, весьма значительно, потому что эти существа, бесконечно разнообразные и многочисленные, с непрерывно меняющимися поколениями, покрывают своими постепенно накапливающимися и все время отлагающимися остатками все участки поверхности земного шара.

Из этих высказываний следует правильная оценка огромной геологической роли организмов и продуктов их разложения.

Выдающийся натуралист и географ А. Гумбольдт в своем сочинении «Космос» дал синтез знаний того времени о Земле и космосе и на основании этого развил идею о взаимосвязи всех природных процессов и явлений.

Существование биосферы Земли как целостной природной системы выражается в первую очередь в круговороте энергии и веществ при участии всех живых организмов планеты. Идея биосферного круговорота была обоснована немецким физиологом Я. Молешоттом . А предложенное в 80-е гг. XIX в. подразделение организмов по способам питания на три группы (автотрофные, гетеротрофные и миксотрофные) немецким физиологом В. Пфеффером было крупным научным обобщением, способствующим пониманию основных процессов обмена веществ в биосфере.

Начало учения о биосфере связывают с именем знаменитого французского натуралиста Ж.Б. Ламарка. Определение же биосферы впервые было введено австрийским геологом Э. Зюссом в 1875 г. Значительно более широкое представление о биосфере мы встречаем у В.И. Вернадского.

Биосфера и человек. На начальных этапах существования человеческого общества интенсивность воздействия на среду обитания не отличалась от воздействия других организмов. Получая от окружающей среды средства к существованию в таком количестве, которое полностью восстанавливалось за счет естественных процессов биотического круговорота, люди возвращали в биосферу то, что использовали другие организмы для своей жизнедеятельности. Универсальная способность микроорганизмов разрушать органическое вещество, а растений – превращать минеральные вещества в органические обеспечивала включение продуктов хозяйственной деятельности людей в биотический круговорот.

Первая созданная человеком культура – палеолит (каменный век) – продолжалась примерно 12–30 тыс. лет. Она совпала с длительным периодом оледенения. Экономической основой жизни человеческого общества в это время была охота на крупных животных: северного оленя, шерстистого носорога, лошадей, мамонта, тура. На стоянках дикого человека находят многочисленные кости диких животных – свидетельство успешной охоты. Интенсивное истребление крупных травоядных животных привело к сравнительно быстрому сокращению их численности и исчезновению многих видов. Если мелкие травоядные могли восполнить потери от преследования охотниками высокой рождаемостью, то крупные животные в силу особенностей их биологии были лишены этой возможности. Дополнительные трудности для них создали изменившиеся в конце палеолита климатические условия. 10–12 тыс. лет назад наступило резкое потепление, отступил ледник, распространились леса в Европе. Это создало новые условия жизни, разрушило сложившуюся экономическую базу человеческого общества. Закончился период его развития, характеризовавшийся чисто потребительским отношением к окружающей среде.

В следующую эпоху – эпоху неолита (новый каменный век) – наряду с охотой, рыбной ловлей и собирательством все большее значение приобретает процесс производства пищи. Делаются первые попытки одомашнивания животных и разведения растений. На местах археологических раскопок поселений, существовавших 9–10 тыс. лет назад, обнаруживают пшеницу, ячмень, чечевицу, кости домашних животных – коз, свиней, овец. Развиваются зачатки земледельческого и скотоводческого хозяйства. Широко используется огонь для уничтожения растительности в условиях подсечного земледелия и как средство охоты. Начинается освоение минеральных ресурсов, зарождается металлургия.

Рост населения, интенсивное развитие науки и техники в последние два столетия, и особенно в наши дни, привели к тому, что деятельность человека стала фактором планетарного масштаба, направляющей силой дальнейшей эволюции биосферы. Возникли антропоценозы (от греч. anthropos – человек, koinos – общий, общность) – сообщества организмов, в которых человек является доминирующим видом, а его деятельность – определяющей состояние всей системы. В настоящее время человек извлекает из биосферы сырье в значительном и все возрастающем количестве, а современные промышленность и сельское хозяйство производят или применяют вещества, не только не используемые другими видами организмов, но нередко ядовитые и чуждые природе. В результате биотический круговорот становится незамкнутым. Вода, атмосфера, почвы загрязняются отходами производства, вырубаются леса, истребляются дикие животные, разрушаются природные биогеоценозы.

Нежелательные последствия неконтролируемой человеческой деятельности осознавали естествоиспытатели уже в конце XVIII – начале XIX в. (Ж.-Л.-Л. Бюффон, Ж.-Б. Ламарк).

По своим последствиям воздействия человеческого общества на среду обитания могут быть положительными и отрицательными. Последние особо привлекают к себе внимание. Основные пути воздействия людей на природу заключаются в расходовании естественных богатств в виде минерального сырья, почв, водных ресурсов; загрязнении среды, истреблении видов, разрушении биогеоценозов.

Положительное влияние человека выражается в выведении новых пород домашних животных и сортов сельскохозяйственных растений, создании культурных биогеоценозов, а также в разработке новых штаммов полезных микроорганизмов как основы микробиологической промышленности, развитии прудового рыбного хозяйства, продукции полезных видов в новых условиях обитания.

Прогнозы будущего человечества с учетом экологических проблем, стоящих перед ним, представляют непосредственный интерес для всего населения планеты. По мнению экспертов, экологическая ситуация, складывающаяся на Земле, таит в себе опасность серьезных и, возможно, необратимых нарушений биосферы в том случае, если деятельность человечества не приобретет планомерный, согласующийся с законами существования и развития биосферы характер. Вместе с тем расчеты показывают, что человеческое общество не использует значительные резервы биосферы.

Одной из наиболее острых проблем современности является проблема быстрого роста населения Земли. Ежегодный прирост населения в абсолютном исчислении достигает 60–70 млн. человек, или примерно 2%. К 2000 г. численность населения достигла 6 млрд. человек. Площадь поверхности суши на планете равна 1,5 10 14 м 2 , что достаточно для размещения 15–20 млрд. человек со средней плотностью 300–400 человек на 1 км 2 , имеющей место в настоящее время в Бельгии, Нидерландах, Японии.

Растущее население Земли должно быть обеспечено пищей. Известно, что производство продовольствия на душу населения растет медленнее, чем производство энергии, одежды, различных материалов. Многие миллионы людей в слаборазвитых странах испытывают; нехватку продуктов. Вместе с тем из всей территории суши, пригодной для земледелия, в среднем по земному шару сельскохозяйственными угодьями занято лишь 41%. При этом на используемой территории, по мнению разных экспертов, получают от 3 – 4 до 30% возможного при современном уровне развития агротехники количества продуктов. Причины этого отчасти заключаются в недостаточной энерговооруженности сельского хозяйства. Так, в Японии при выращивании урожая, в пять раз большего, чем в Индии (с 1 га сельскохозяйственных угодий), затрачивают в 20 раз больше электроэнергии и в 20 – 30 раз – удобрений и пестицидов.

Уже сейчас 30% металлоизделий изготовляют из вторичного сырья. При существующей технологии из месторождений нефти извлекается лишь 30–50% запасов. Выход полезных ископаемых, таким образом, может быть увеличен путем разработки прогрессивных способов добычи. Около 95% энергии в настоящее время получают за счет сжигания ископаемого топлива, 3–4% – за счет энергии речного стока и только 1 – 2% – за счет атомного горючего. Использование атомной энергии в мирных целях решает проблему энергетического кризиса.

Преобразующая деятельность людей неизбежна, так как с ней связано благосостояние населения. Современное человечество располагает исключительно мощными факторами воздействия на природу планеты. Следование принципу научно обоснованного рационального природопользования позволяет получить в целом позитивный итог.

Превращение биосферы в ноосферу. Понятие «ноосфера» было введено и науку французским философом Э. Леруа в 1927 г.

Ноосферой Леруа назвал оболочку Земли, включающую человеческое общество с его языком, индустрией, культурой и прочими атрибутами разумной деятельности.

Ноосфера, по мнению Э. Леруа, представляет собой «мыслящий пласт», который, зародившись в конце третичного периода, разворачивается с тех пор над миром растений и животных, вне биосферы и над ней.

Значительно более широкое представление о биосфере и ноосфере дал один из выдающихся ученых, основатель геохимии, биохимии, радиогеологии В.В. Вернадский. Он исходил из того, что естественно-научные гипотезы должны отражать объективную реальность материального мира – закономерности, связанные с физико-химическими, геологическими, биохимическими и другими процессами в едином комплексе.

В противоположность трактовке ноосферы, выдвинутой Э. Леруа, Вернадский представлял ноосферу не как нечто внешнее по отношению к биосфере, а как новый этап в развитии биосферы, заключающийся в разумном регулировании отношений человека и природы.

В. Вернадский сформулировал ряд конкретных условий, необходимых для становления и существования ноосферы. Перечислим эти условия и посмотрим, в какой мере эти условия выполнены или выполняются.

1.Заселение человеком всей планеты. Это условие выполнено. На Земле не осталось места, где бы не ступала нога человека. Он обосновался даже в Антарктиде.

2.Резкое преобразование средств связи и обмена между странами . Это условие также можно считать выполненным. С помощью радио и телевизора мы моментально узнаем о событиях в любой точке земного шара.

Средства коммуникации постоянно совершенствуются, ускоряются, появляются такие возможности, о которых недавно трудно было мечтать. И здесь нельзя не вспомнить пророческих слов Вернадского:

Этот процесс - полного заселения биосферы человеком - обусловлен ходом истории научной мысли, неразрывно связан со скоростью сношений, с успехами техники передвижения, с возможностью мгновенной передачи мысли, ее одновременного обсуждения на всей планете.

До недавнего времени средства телекоммуникации ограничивались телеграфом, телефоном, радио и телевидением. Имелась возможность передавать данные от одного компьютера к другому при помощи модема, подключенного к телефонной линии. В последние годы развитие глобальной телекоммуникационной компьютерной сети Интернет дало начало настоящей революции в человеческой цивилизации, которая входит в эру информационных технологий. Рост развитие сети, совершенствование вычислительной и коммуникационной техники идут сейчас в геометрической прогрессии подобно размножению и эволюции живых организмов. На это в свое время обратил внимание Вернадский:

Со скоростью, сравнимой со скоростью размножения, выражаемой геометрической прогрессией в ходе времени, создается этим путем в биосфере все растущее множество новых для нее косных природных тел и новых больших природных явлений, ход научной мысли, например, в создании машин, как давно замечено, совершенно аналогичен ходу размножения организмов.

Если раньше сетью Интернет пользовались только исследователи в области информатики, государственные служащие, то теперь практически любой желающий может получить доступ к ней. И здесь мы видим воплощение мечты Вернадского о благоприятной среде для развития научной работы, популяризации научного знания, об интернациональности науки.

Всякий научный факт, всякое научное наблюдение,– писал Вернадский, –где бы и кем бы они ни были сделаны, поступают в единый научный аппарат, в нем классифицируются и приводятся к единой форме, сразу становятся общим достоянием для критики, размышлений и научной работы.

Если раньше для того, чтобы вышла в свет научная работа, a научная мысль стала известной миру, требовались годы, то сейчас любой ученый, имеющий доступ к сети Интернет, может представить свой труд ученому миру.

3. Усиление связей, в том числе политических, между всеми странами Земли. Это условие можно считать если не выполненным, то выполняющимся. Возникшая после Второй мировой войны Организация Объединенных Наций (ООН) оказалась достаточно устойчивой и действенной.

4. Начало преобладания геологической роли человека над другими геологическими процессами, протекающими в биосфере. Это условие также можно считать выполненным, хотя именно преобладание геологической роли человека в ряде случаев привело к тяжелым экологическим последствиям. Объем горных пород, извлекаемых из глубин Земли всеми шахтами и карьерами мира, сейчас почти в два раза превышает средний объем лав и пеплов, выносимых ежегодно всеми вулканами Земли.

5. Расширение границ биосферы и выход в космос. В работах последнего десятилетия жизни Вернадский не считал границы биосферы постоянными. Он подчеркивал расширение их в прошлом как итог выхода живого вещества на сушу, появления высокоствольной растительности, летающих насекомых, а позднее – летающих ящеров и птиц. В процессе перехода к ноосфере границы биосферы, согласно учению Вернадского, должны расширяться, а человек должен выйти в космос. Эти предсказания сбылись.

6.Открытие новых источников энергии. Условие в принципе выполнено, но иногда с трагическими последствиями. Речь идет об атомной энергии, которая давно освоена и в мирных, и, к сожалению, в военных целях. Человечество (а точнее, политики) пока явно не готово ограничиться мирными целями, более того, атомная (ядерная) сила вошла в наш век, прежде всего как военное средство и средство устрашения противостоящих ядерных держав. Вопрос об использовании атомной энергии глубоко волновал Вернадского еще более полувека назад. В предисловии к книге «Очерки и речи» он пророчески писал:

Недалеко время, когда человек получит в свои руки атомную энергию, такой источник силы, который даст ему возможность строить свою жизнь, как он захочет. Сумеет ли человек воспользоваться этой силой, направить ее на добро, а не на самоуничтожение?

Для развития международного сотрудничества в области мирного использования атомной энергии в 1957 г. создано Международное агентство по атомной энергии (МАГАТЭ), объединившее большую часть государств – членов ООН.

7. Равенство людей всех рас и религий. Это условие если не достигнуто, то, во всяком случае, достигается. Решительным шагом для установления равенства людей различных рас и вероисповеданий стало в прошлом веке разрушение колониальных империй.

8.Увеличение роли народных масс в решении вопросов внешней и внутренней политики. Это условие соблюдается во многих странах с парламентской формой правления.

9.Свобода научной мысли и научного искания от давления религиозных, философских и политических построений и создание в государственном строе условий, благоприятных для свободной научной мысли. Сейчас трудно говорить о выполнении этого условия в разных странах. Для поддержания российской науки созданы международные фонды. В развитых и даже развивающихся странах, например в Индии, государственный и общественный строй создает режим максимального благоприятствования для свободной научной мысли.

10. Продуманная система народного образования, и подъем благосостояния трудящихся. Создание реальной возможности не допустить недоедания и голода, нищеты и ослабить болезни. О выполнении этого условия пока судить преждевременно. Однако Вернадский предупреждал, что процесс перехода биосферы в ноосферу не может происходить постепенно и однонаправленно, что на этом пути временные отступления неизбежны.

11.Разумное преобразование первичной природы Земли с целью сделать ее способной удовлетворить все материальные, эстетические и духовные потребности численно возрастающего населения. Это условие пока также не может считаться выполненным, однако первые шаги в направлении разумного преобразования природы во второй половине прошлого века, несомненно, начали осуществляться. Вся система научного знания дает фундамент для решения экологических задач.

12.Исключение войн из жизни общества. Это условие Вернадский считал чрезвычайно важным для создания и существования ноосферы. Но оно пока не выполнено. В целом мировое сообщество стремится не допустить мировой войны, хотя локальные войны непрерывно возникают.

Таким образом, мы видим, что большая часть условий перехода биосферы в ноосферу выполняется , а те, для которых такие условия еще не созрели, в принципе могут быть выполнены объединенными усилиями всего человечества. Однако ясно, что процесс перехода к ноосфере будет постепенным. Это неоднократно подчеркивал и сам Вернадский, утверждая, что человеческая цивилизация лишь вступает в переходный период от биосферы к ноосфере.

На современном этапе говорить о разумной планетарной деятельности человечества еще рано. Ноосфера – это определенный образ или идеал будущего планетарного развития. Идеи Вернадского намного опережали то время, в котором он творил. В полной мере это относится к учению о биосфере и ее переходе в ноосферу. Только сейчас, в условиях необычайного обострения глобальных проблем современности, становятся ясны пророческие слова Вернадского о необходимости мыслить и действовать в планетарном – биосферном – аспекте. Только сейчас рушатся иллюзии технократизма, покорения природы и выясняется сущностное единство биосферы и человечества. Судьба нашей планеты и судьба человечества – это единая судьба.

Устремленность в будущее – характерная черта ноосферного учения, которое в современных условиях необходимо развивать во всех направлениях.


Похожая информация.



Вернадский высказывал предположение, что революционные изменения в морфологии живых существ соотносимы с так называемыми критическими периодами геологической истории планеты, движущие пружины которых выходят за пределы только земных явлений. Речь, возможно, идет о каком-то пока не понятом и не исследованном космическом воздействии. Интенсивность не только геологических процессов, но и эволюционно-органических "связана с активностью биосферы, с космичностью ее вещества. Причины лежат вне планеты". Становление предков современного человека находится в прямой связи с ритмическими изменениями климата нашей планеты, которые являются результатом интегрального отражения взаимодействия всех геосфер нашей планеты друг с другом и с космосом. Космические воздействия слагаются из гравитационных и корпускулярных. Первые связаны с изменением орбит Земли и Солнца под воздействием других планет и галактик, им присущ средне- и долгопериодический характер (все известные климатические циклы, начиная с цикла продолжительностью 35-45 тыс. лет и кончая циклом 200 тыс. лет, так или иначе связаны с орбитальными циклами). Вторые пока еще не исследованы, вероятно, они являются причиной короткопериодических климатических ритмов с длительностью в единицы, десятки, сотни и первые тысячи лет.

Обусловленные гравитацией колебания скорости вращения Земли, ее углового момента вызывают изменения атмосферно-океанической циркуляции, тогда как колебания потока корпускулярных частиц ответственны за изменения стратосферных течений. Немаловажную роль в обоих случаях играет магнитное поле Земли. Однако до сих пор механизм этой глубокой связи магнитного поля с климатом, а через него и со всей биосферой, не выяснен. Установлено, что орбитальные климатические ритмы (400 тыс.; 1,2; 2,5; 3,7 млн. лет) являются рабочими хронометрами биосферы, среди них - 400-тысячелетний ритм служит основной причиной крупнопериодических изменений климата и эволюции органического мира. Этот ритм выявлен геологами из последовательности ледниковых событий и только потом обнаружен астрономами. Внутри данный ритм членится на 6-8 фаз, причем становление и развитие живого вещества биосферы, в том числе и предков человека, полностью подчиняются этому климатическому ритму с его фазами.

С циклическими (периодическими) процессами мы встречаемся на различных уровнях развития материи, начиная космическими и кончая социальными процессами. Данные науки свидетельствуют о том, что ритм и периодичность управляют Вселенной, живыми организмами, социальными явлениями. Ритм как бы "запрограммирован" сущностью движения, без которого бесконечный мир просто не может существовать, он выступает в качестве основного закона природы и общества. Ритмы крайне разнообразны, их нельзя сводить друг к другу, ибо на каждом уровне иерархической Вселенной мы встречаемся с качественно различными ритмическими процессами и структурами.

Наличие циклических процессов в явлениях жизни позволяет выдвинуть предположение о существовании циклических закономерностей в топологии энантиоморфного биологического пространства - времени. Пространство это имеет энантиоморфную (право-левую) природу и принципиально отличается от пространства неживого вещества. Получается так, что если неживое вещество состоит из равного количества правых и левых молекул, то в живых органических системах используется только одна из этих форм. В дальнейшем было установлено, что живые организмы содержат левые аминокислоты и правые сахара. Таким образом, все белки живых организмов состоят из левых аминокислот.

Отсюда Пастер сделал вывод, что продуцирование оптически активных соединений в одной-единственной форме (правой или левой) является исключительной привилегией жизни.

Давались разные объяснения этому загадочному феномену. Пастер полагал, что асимметрия (хиральность) жизни обусловлена космической асимметрией или неким космическим фактором. Этой идеи придерживался В.И. Вернадский, указывая на право-левый характер галактических спиралей и на право-левую природу космического вакуума. Диссимметрию живого существа Вернадский понимает как "особое, строго определенное состояние пространства".

Данная идея не получила достаточного осмысления в современной науке. Вернадский предложил нетрадиционный и оригинальный подход к объяснению происхождения и сущности жизни. Пространство-время он рассматривает не в аспекте его проявления в природе, а как фактор, определяющий специфические черты биологической организации материи. Так, асимметрия живого вещества является следствием особой топологии пространственно-временного субстрата, в котором "не могут одинаково образоваться... правые и левые молекулы химических соединений". Хиральность - атрибутивное свойство биологического пространства-времени, которое пока еще не известным нам образом воздействует на вещество.

Вернадский обосновал положение, что все характеристики жизни и времени совпадают: и жизнь, и время необратимы; они никогда не текут вспять; они всегда направлены одинаковым образом - из прошлого в будущее, т. е. асимметричны. Время биологически содержательно, оно строится причинно-обусловленными событиями: сменой поколений. Рассмотренное таким образом время ничуть не похоже на физическое или космическое бесструктурное аморфное время, не имеющее никакого содержания, а только мерные единицы, причем способ их получения не имеет принципиального значения.

Биологическое время, как называет его Вернадский, имеет совершенно четкие мерные единицы, которые нельзя заменить никакими другими. Если все время существования жизни представить как единый монолит, то его "секундами" будут сами организмы. Какие именно из них выбрать за эталонные единицы для всего живого - вопрос науки. Сам Вернадский считал мерными единицами делящиеся бактерии. Их изучение должно дать нам представление о внутреннем строении пространства и времени.

На основании исторического материала крупный русский ученый В.М. Бехтерев сделал вывод, "что везде и всюду появление коллективной деятельности, как и проявление индивидуальной жизни, подчиняется закону ритма, имеющего, таким образом, всеобщее значение". Человек как биосоциальное существо фокусирует в себе многообразие ритмов, порожденное биологической и социокультурной эволюцией.

Вся человеческая деятельность - от организма до истории - пронизана самыми разнообразными ритмами. Так, специальный анализ выявил строгие закономерности в ритмических процессах центральной нервной системы животных и человека. Эти закономерности отражают чувствительность нервных процессов к скорости и ускорениям внешних ритмических воздействий. На основе этого выдвигается предположение о возможности возникновения более высоких, а именно, психологических форм отражения на основе филогенетически древних собственных ритмических образований мозга.

У каждого живого существа и у каждой социальной системы есть свой внутренний ритм. Но все они настраиваются на те колебания, которые оказывают на них влияние, и вынуждены приспосабливаться к ним тем больше, чем колебания сильнее. Могут быть и конкурирующие ритмы, но побеждают более мощные. И среди них вне конкуренции стоит Солнце как колебательный источник энергии, влияющий на все живое на Земле. Если оно оказывает влияние и на общественные явления, то их изучение становится крайне важным для настройки на солнечные и другие космические колебания, особенно если те носят периодический характер. Космическое влияние следует рассматривать в синтезе с внутренней цикличностью биологической и социальной жизни.

В то же время Солнце, как внешний и мощный источник энергии, настраивает все земные процессы, в том числе и в обществе. Циклы Солнца - это часы, регистрирующие смену его активности. И если бы удалось установить, что смена солнечной активности связана со сменой социальных форм общественной жизни, то можно было бы говорить о настройке социальных циклов на солнечные или хотя бы о влиянии солнечной цикличности на социальные перемены. И если бы связь удалось установить, то человечество получило бы в свои руки мощный ускоритель полезных эффектов и гаситель негативных. Например, было бы известно, когда лучше начинать крупные реформы в обществе - в год негативного или пассивного Солнца. Проведение перемен и их прогнозирование осветилось бы разумом более высокого порядка. Конечно, необходимо исследовать и использовать весь комплекс космических ритмов для настраивания социальных процессов. Поэтому конечная цель изучения всех ритмических процессов - это сознательное управление ими в пределах человеческих возможностей.

Основателем гелиобиологии является известный русский ученый АЛ. Чижевский. Его основная научная линия - исследование влияния солнечной активности на все живое.

Главная идея А.Л. Чижевского - это связь исторических событий с солнечной активностью. Вот одна из его центральных мыслей, высказанная в книге "Физические факторы исторического процесса": "Более или менее длительные исторические события, продолжающиеся в течение нескольких лет и получающие решительное проявление в эпоху максимума солнцедеятельности, а также сопутствующая этим событиям эволюция идеологий, массовых настроений и пр., протекают по всеобщему историческому циклу, претерпевая следующие ясно обнаруживаемые этапы:

Период минимальной возбудимости;

Период нарастания возбудимости;

Период максимальной возбудимости;

Период падения возбудимости.

Эти четыре этапа (назовем их периодами) стремятся быть вполне одновременными с соответствующими им эпохами солнцедеятельности: минимумом пятен, нарастанием максимума, максимумом и убыванием максимума с переходом в минимум".

Такова, если говорить предельно кратко, идея функциональной связи общественной возбудимости (войн, революций, массовых движений) с солнечной активностью. Связь эта, если она есть, может быть только статистической, т. е. не соблюдаться во всех случаях. И это понятно, потому что на любое социальное явление влияет множество факторов. Из них мы обычно отдаем приоритет экономическим и политическим противоречиям - социальным двигателям исторического прогресса. Тем не менее, если эта связь хотя бы в небольшом числе случаев имеет место, она должна исследоваться и учитываться. Необходимость этого важна еще и потому, что она, возможно, ведет к доказательству великой гипотезы об универсальности явления цикличности всех земных и космических процессов. "И кто знает, - пишет А.Л. Чижевский, - быть может, мы, "дети Солнца", представляем собой лишь слабый отзвук тех вибраций стихийных сил космоса, которые проходят окрест Земли, слегка коснулись ее, настроив в унисон дотоле дремавшие в ней возможности..." Там же он пишет: "Среди великого разнообразия массовых явлений в разные времена перед нами всей ясней и ясней обнаруживается стихийный ритм в их жизни, одновременность в биении их пульса, одновременные смены мощных подъемов и глубоких падений. И представим себе, что мы изучили этот ритм, овладели им так, что можем управлять, можем прогнозировать подъемы и спады. Представим и поймем, как возрос бы эффект наших действий и скольких потерь можно было избежать, что дает такая методика для выявления новых закономерностей в мировой истории".

Изучив историю 80 стран и народов за 2500 лет, А.Л. Чижевский показал, что с приближением к годам максимума солнечной активности количество исторических событий с участием масс увеличивается и достигает своей наибольшей величины в эти годы. Наоборот, в минимумы активности солнца наблюдается минимум массовых действий.

Всегда считалось, что из прошлого можно извлекать уроки для будущего, ибо в основе эволюции общества лежит вполне определенная ритмичность (ее анализ дан в известной 12-томной работе А. Тойнби "Исследования по истории"). Эта ритмичность оказывала помощь в предвидении тенденций развития общественной системы или ее подсистем. Например, исследование исторических колебаний в развитии экономики привело к открытию в ней законов циклов, которые используются в процессе планирования будущего. Однако мы живем в эпоху, не имеющую исторического прецедента, в эпоху невиданных раньше изменений и открытий. Поэтому весьма опасно экстраполировать тенденции прошлого на будущее, ибо механизмы саморегуляции общественной системы оказались неэффективными.



Признает ли официальная наука влияние планет и Светил (Солнца и Луны) на земные процессы и живые организмы? Можно однозначно ответить: «Да!» Разные направления науки уже обладают обширными результатами исследований влияния на нас гравитационных полей Луны и планет, а также электромагнитного поля Солнца.

Но эти влияния очень трудно исследовать, поскольку подчас сложно установить их связь с земными явлениями, а также отделить от прочих влияний – других небесных тел и независимых процессов, происходящих на Земле. А есть ли такие глобальные процессы на Земле, которые происходят независимо от влияний Солнечной системы? Или для всех глобальных земных процессов существует космическая причина, действующая, как пусковой механизм? Часть исследователей склоняются ко второму варианту, но все же на этот вопрос однозначно ответить пока нельзя. Тем не менее, само наличие влияния Солнца, Луны и планет считается доказанным.

Солнечные часы

Взять хотя бы Солнце. Всем очевидно его влияние: смена времен года, суточная активность… Год, как основа нашего календаря, – это полный оборот Земли вокруг Солнца, и был заложен в календарь древними астрологами. Астрология всегда выделяла Солнце и Луну, как небесные тела, доминирующие в своем влиянии по сравнению с прочими телами – планетами. И сейчас тому есть физическое обоснование: действительно, масса Солнца несравнимо больше массы других тел Солнечной системы, а также оно (и только оно!) дарит нам тепло и свет, электромагнитное излучение. Луна же – самое близкое к Земле тело, и его гравитационное влияние на нас в 2,2 раза больше, чем Солнца. Некоторые биологические исследования показывают также воздействие отраженного Луной света на жизнедеятельность некоторых организмов.

Итак, год – это длинный солнечный цикл, соответствующий полному обороту Земли вокруг Солнца, а сутки – это короткий солнечный цикл, соответствующий обороту Земли вокруг своей оси. В те времена, когда зарождался наш календарь, сутки не имели такой же точной длительности в часах, да и само понятие часа было иным. Тогда границы суток устанавливались двумя последовательными кульминациями Солнца (кульминация – это самая высокая точка на небе, которую достигает Солнце за сутки). Или между двумя моментами восхода Солнца. И с точки зрения биологии более верны именно такие границы суток.

Мы с детства привыкли считать, что все живое на земле подчинено этим двум солнечным циклам – годичному и суточному. Мы знаем также и такое обоснование этих влияний: это в основном изменяющееся количество тепла и света, которое поступает от Солнца. Летом в северном полушарии Солнце поднимается выше и светит дольше в течение суток, чем зимой, лучше прогревая Землю. А в южном полушарии – наоборот: Земля больше прогревается, когда у нас зима.

Но мало кто задумывается еще и о таком факте, как скорость Земли на ее орбите . Летом она минимальна (для обоих полушарий, разумеется). В это время стрелка «солнечных часов» движется медленнее, чем зимой всего лишь на 7%, но исследования ученых самых разных направлений, от геологов до биологов, показывают, что даже такое небольшое изменение скорости Солнца относительно Земли является источником значительных перемен, имеющих циклическую основу. И причина этого не столько в изменении скорости перемещения Солнца, как в изменении расстояния между Землей и Солнцем. У Земли почти круговая орбита, но все-таки она имеет небольшой эксцентриситет, и чем ближе Земля к Солнцу, тем больше ее скорость. Близость к Солнцу усиливает взаимное влияние, а более высокая скорость движения планеты требует от всего живого на Земле более быстрой реакции на изменения во влиянии Светила.

Солнечная активность

При этом влияние Солнца на Землю не исчерпывается только орбитальным движением Земли и ее вращением вокруг своей оси. У Солнца есть собственная «жизнь», называемая солнечной активностью : раскаленная масса Солнца находится в непрерывном движении, которое порождает пятна и факелы, меняет силу и направление солнечного ветра. На эту солнечную жизнь сразу реагирует магнитное поле Земли и ее атмосфера, порождая различные явления, воздействуя на животный и растительный мир, провоцируя вспышки рождаемости разных видов животных и насекомых, а также наши с вами заболевания.
В 1610-1611 гг. несколько ученых независимо друг от друга обнаружили на поверхности нашего Светила темные пятна. Это были Г.Галиллей, И,Фабрициус, Х.Шейнер и Т.Гариот . Эти пятна наблюдали и ранее, но из-за такого человеческого свойства, как консерватизм ума, ученые не хотели признавать их и считали ошибками наблюдений. Нередко встречались упоминания о пятнах на Солнце и в древних летописях. В Древней Руси сквозь дым лесных пожаров люди видели на Солнце "темные пятна, аки гвозди".

Галилео Галилей твердо установил появление и исчезновение пятен, изменение их величины и вычислил по ним период обращения Солнца вокруг своей оси. Так было положено начало изучению физики Солнца.

В связи с вращением Солнца вокруг оси теперь выделяют 27-дневный короткопериодический цикл Солнца . В течение этого времени солнечные пятна медленно движутся по обращенной к Земле стороне Солнца, задавая динамику магнитных бурь на планете. Изучение спектра деталей солнечных пятен позволило определять скорости и направления движения вещества в них, и тогда оказалось, что солнечное пятно представляет собой вихревую трубку. Образовавшись из еле заметной точки, пятно живет от одного дня до нескольких месяцев, постепенно исчезая. Обычно размер пятен достигает 2’, но иногда могут появляться гигантские пятна. Появление больших пятен и групп пятен обычно сопровождается магнитными бурями на Земле, что проявляется в колебаниях магнитных стрелок компасов, нарушениях радиосвязи и т.п. Откликается полярными сияниями и грозами.

В 1844 г. любитель астрономии аптекарь Г.Швабе обнаружил периодичность в пятнообразовательной деятельности Солнца. В среднем каждые 11,13 лет наступает максимум числа солнечных пятен. Однако изменения внутри этого цикла не являются строго периодическими, а сама длина цикла меняется от 7 до 17 лет. Обнаружили также вековой цикл – 80-90 лет – с которым меняется максимальная высота максимума, цикл изменения магнитной полярности – ок.22 лет и др.

Помимо обычного излучения, исходящего от Солнца, обнаружено и интенсивное радиоизлучение . Советская экспедиция в Бразилии, наблюдавшая затмение 20 мая 1947 года, обнаружила падение интенсивности радиоизлучения Солнца в 2 раза во время полной фазы солнечного затмения, в то время, как интенсивность общего излучения Солнца уменьшилась в миллион раз. Это говорит о том, что радиоизлучение Солнца происходит главным образом от его короны.

О причинах солнечной активности

Причины циклической деятельности Солнца остаются пока неведомыми. Одни ученые склоняются к мнению, что ее основой являются внутренние механизмы, другие утверждают, что это гравитационные влияния обращающихся вокруг Солнца планет. Вторая точка зрения выглядит логичнее. Нужно учитывать и тот факт, что обращение планет происходит не столько вокруг Солнца, сколько вокруг общего центра тяжести всей Солнечной системы, по отношению к которому само Солнце описывает сложную кривую. Если учесть к тому же, что Солнце – не твердое тело, то такая динамика вращения непременно воздействует и на динамику движения всей солнечной плазмы, задавая ритмы солнечной активности.

С другой стороны, если принимать во внимание динамику приливных явлений на Земле, создаваемую совместно гравитацией Луны и Солнца, то можно считать, что гравитационные воздействия планет точно так же создают динамику приливных явлений на Солнце. Но давайте от ассоциаций перейдем к цифрам: интересно было бы сравнить гравитационное воздействие Луны и Солнца на Землю и планет на Солнце. По закону тяжести сила притяжения двух тел F = G M 1 M 2 / R 2 , где M 1 и M 2 – массы этих тел, а R – расстояние между ними. Нам интересно отношение силы тяжести Солнце-планета к силе тяжести Земля-Луна:

F с-пл / F з-л = M с M пл R з-л 2 / (M з M л R с-пл 2)

В таблицу 1 сведены массы планет, их средние расстояния от Солнца и подсчитаны отношения к силе притяжения Луны и Земли. При этом за единицу массы принята масса Земли, а за единицу длины – одна астрономическая единица (1 а.е.), т.е. среднее расстояние Земли от Солнца. Планеты движутся почти по круговым орбитам, поэтому будем считать их расстояние от Солнца всюду одинаковым. Масса Луны равна 1/81,45=0,0123 массы Земли; расстояние Луны от Земли – 0,00257 а.е., масса Солнца – 333434 масс Земли.

Таблица 1. Сравнение силы притяжения планет и Солнца с притяжением Земли и Луны.

Планета Масса
планеты
Среднее расст.
от Солнца, а.е.
Отношение притяжения
Солнце-планета
к притяжению Земля-Луна
Меркурий 0,044 0,38710 52,67
Венера 0,826 0,72333 283,19
Земля 1,00 1,00000 179,38
Марс 0,108 1,52369 8,34
Юпитер 318,4 5,20280 2109,9
Сатурн 95,2 9,53884 187,68
Уран 14,6 19,19098 7,1
Нептун 17,3 30,07067 3,43
Плутон я не стала рассматривать по нескольким причинам. Во-первых, его масса еще неопределена из-за недостаточного количества наблюдений: ведь он очень медленно движется по орбите, а открыт совсем недавно. Считается, что она меньше 1. Во-вторых, на его орбите обнаружен целый пояс планетоидов, сравнимых с Плутоном по размеру и массе, и хотя в этом поясе еще не обнаружены планеты такого же или большего веса, как Плутон, они вполне могут там находиться. Вполне вероятно, что Плутон и пояс Койпера нужно учитывать как поле массы, а не отдельные точки массы.

Что ж, такие сравнительные результаты очень впечатляют! Все планеты влияют на Солнце значительно сильнее, чем Луна на Землю! Вспомним, к тому же, что Земля твердая, и ее водно-атмосферная оболочка небольшая, а Солнце полностью состоит из подвижной плазмы. Тогда планеты гораздо более сильно провоцируют движение этой плазмы, чем Луна – воздушно-водные массы на Земле.

Итак, несложные сопоставления показывают, что планеты должны вызывать значительные приливные явления на Солнце, причем волны этих приливов должны накладываться друг на друга и иметь разную периодичность, поскольку у планет разный период обращения, вызывая очень сложную динамику движения солнечного вещества. При этом, как видим из таблицы, самое большое движение вызывает Юпитер. Сила воздействия Венеры составляет 13,4% от силы Юпитера, Сатурна – 8,9%, Земли – 8,5%, Меркурия – 2,5%. Вклад Марса, Урана и Нептуна в жизнь Солнца по сравнению с Юпитером кажется ничтожным, но не будем забывать: в сравнении действия Луны на Землю их воздействие на Солнце отличается в разы!
Странно, но у некоторых астрономов, пишущих обличительные статьи против астрологии, оказывается, что «Астрономы истратили много сил в поиске связи между положением планет и солнечной активностью… физические оценки показывают чрезвычайную слабость приливного влияния планет на Солнце… » (В.Г.Сурдин).

А может быть, плохо искали? Ведь вот: лежит на поверхности, стоит лишь вооружиться калькулятором. Большинством астрологов движет такая вера во влияние планет, что среди них мало тех, кто имеет время и желание разбираться в астрол огической физике. А многими астрономами движет полное отрицание астрологии, и поэтому они просто не хотят даже пытаться проверить то, что само напрашивается: «Этого не может быть, потому что не может быть никогда! » – как писал Чехов в своем фельетоне "Письмо ученому соседу”. Однако, утверждение Сурдина – не более, чем преувеличение, искажающее факты, для убедительности. Исследования влияний планет на солнечную активность ведутся, и существует ряд серьезных работ, в которых показано, что распределение планет вокруг Солнца позволяет в определенной степени предсказывать солнечную активность (например, работа В.Шувалова "Солнечная активность и положения планет", журнал «Наука и Жизнь», 1971.10).

Логика подсказывает, что следующим пунктом анализа влияния планет на солнечную активность, является составление хотя бы упрощенной модели приливных явлений на основании закона тяготения. Например, предположим, что кроме Юпитера в Солнечной системе нет планет – рассчитали приливную волну Юпитера, ее частоту и изменение амплитуды. Затем так же рассчитать приливные волны от каждой из других планет и наложить их друг на друга. Сопоставление результатов такой логической модели с наблюдаемой солнечной активностью, уверена, помог бы установить некоторые закономерности в солнечной активности и затем предсказывать вспышки на Солнце и планировать различные мероприятия на Земле, например, сельскохозяйственные, медицинские и социальные. Неужели никто не пытался этого сделать? А может быть, «Солнечные Службы», которые следят за солнечной активностью, так и поступают? Ответ на этот вопрос, к сожалению, мне неизвестен. Интуиция подсказывает мне, что такое большое количество воздействий на такую массивную и подвижную массу, как Солнце, должно вызывать очень сложные реакции: возможно, те самые турбулентные течения, какими и являются, по всей видимости, солнечные пятна. А это уже гидродинамика, системы сложных дифференциальных уравнений, решение которых бывает не под силу даже компьютерам…

Межпланетное магнитное поле

С помощью космических аппаратов сейчас установлено существование так называемого солнечного ветра (потоки заряженных частиц) и секторной структуры межпланетного магнитного поля. Солнечный ветер обусловлен, конечно, солнечной активностью, у него все время меняется скорость, поэтому он достигает Земли с различным временем запаздывания. За это время Солнце поворачивается, и мы видим совсем не ту картину на его диске; это, по сути, картина нашего будущего.
Магнитное межпланетное поле оказывается разделенным на несколько перемежающихся секторов. В одном секторе напряженность направлена от Солнца, в другом – к Солнцу. И все эти сектора вращаются вслед за Солнцем примерно с той же периодичностью – около 27 дней. При этом быстрые потоки догоняют медленные, и концентрация частиц возрастает. Обычно этих секторов либо 2, либо 4. Тогда знак магнитного поля меняется соответственно через 13-14 или 6-7 дней (т.е. половину или четверть периода обращения Солнца вокруг своей оси).
Инициатором изучения влияния этих явлений на биосферу был С.М.Мансуров. В содружестве с врачами он одним из первых показал, что биологические процессы, в том числе сердечно-сосудистые и нервно-психические заболевания, протекают в ритме, заданном солнечным ветром. Сейчас науке известно, что потоки частиц, которые идут от солнечных пятен, достигая Земли, влияют прежде всего на мозг, сердечно-сосудистую и кровеносную системы человека. А в 1915 году Александр Чижевский сделал вывод, что солнечная активность провоцирует экстремальные земные события – эпидемии, войны, революции.

Влияние солнечной активности

Один из основоположников космического естествознания А.Л.Чижевский в 1930 году занялся изучением связи жизненных ритмов с циклами внешней среды, обработал большое количество исторических данных и провел собственные исследования. Прежде всего, его интересовали циклы активности Солнца. Его книга «Эпидемические катастрофы и периодическая деятельность Солнца» была переиздана в 1938 году французским издательством «Гиппократ», а в 70е годы выдержала у нас два массовых издания под названием «Земное эхо солнечных бурь» (М.Мысль, 1973, 1976). Теперь изучением ритмов, и не только солнечных, а любых космических ритмов, занимаются специалисты самого разного профиля – геологи, физиологи, врачи, биологи, гистологи, метеорологи, астрономы.
Число аварий в энергосетях США в районах повышенного риска (близких к авроральной зоне) возрастает вслед за уровнем геомагнитной активности. В годы минимума активности вероятности аварий в опасных и безопасных районах практически уравниваются. (1. уровень геомагнитной активности. 2. число аварий в геомагнитно-опасных зонах. 3. число аварий в безопасных районах.)
Изменение солнечной активности влияет на живую природу. На срезе ствола сосны хорошо видно, что ширина годичных колец и, следовательно, скорость роста дерева меняются с периодом около одиннадцати лет. ,
Например, установлено, что исходя из солнечной активности, можно прогнозировать погоду, в частности, засухи в тех или иных участках Земли, а также размножение вредителей: грызунов и саранчи. Такие прогнозы позволяли предпринимать определенные меры, например, в 1958 году Н.С.Щербаков предсказал размножение саранчи и ее залет на территорию Туркмении, и ее быстро ликвидировали благодаря его прогнозу. В основе такого массового размножения вредителей лежат изменения климатических факторов, связанных с солнечной активностью.
Изучение влияния Солнца на рыб может помогать и рыбодобывающей отрасли. Камчатский ихтиолог И.Б.Бирман в 1976г. в своей докторской диссертации показал, что одной из внешних причин колебаний численности рыб кроме Луны может быть и солнечная активность. В эпохи максимума солнечной активности наблюдались наиболее мощные подходы амурской горбуши для нереста. В это время на Амуре наблюдались повышенные летние и часто очень низкие зимние температуры. Такие условия вызывают у рыбы ускоренное созревание гонад и сжигание энергетического запаса. Преждевременно созревшие рыбы устремляются в нетрадиционные для них низовые притоки Амура. Их истощение приводит к массовой гибели, и течение рек несет тысячи неотметавших икры рыб. А икра, отложенная в неблагоприятной среде, в большой своей массе погибает. Все это ведет к снижению численности рыб в следующие года. Также замечено, что на Амуре и других дальневосточных реках наиболее высокие паводки обычно совпадали с периодами максимумов солнечных пятен.

На основании своих исследований динамики природных процессов в зависимости от солнечной активности, Бирман еще в 1957 г. предсказывал, что в ближайшие 10 лет запасы кеты без применения энергичных мер резко уменьшатся. Действительно, после максимума 1957 г. это произошло.

Ученые не обошли вниманием и животноводство. Кроме динамики засух, которая обуславливает корм для животных, Д.И.Маликов на основании многочисленных экспериментов пришел к выводу, что от солнечной активности и погоды зависит также и состояние половой функции производителей и изменчивость живого веса потомства.

Иногда ученые, которые посвящают себя изучению астрологии, дабы доказать ее несостоятельность, находят в ней весьма ценные зерна. Так, один биолог обратил внимание на наблюдения астрономов за короной Солнца. И вот что он обнаружил. Когда она имеет «растрепанный» вид (лучи ее торчат во все стороны), то на Солнце много пятен и протуберанцев, а планеты «собраны» в кучку и находятся за Солнцем, при этом космограмма может иметь вид «Чаша» или «Корзина». При таком максимуме солнечной активности наблюдаются обострения хронических заболеваний, инфаркты миокарда, инсульты и возрастание агрессивных действий. Когда же на Солнце пятен мало, то корона вытягивается вдоль солнечного экватора, наподобие крыльев или опахал, а космограмма имеет вид «Россыпь», т.е. планеты «разбросаны» по Зодиаку. Тяжесть заболеваний уменьшается, а также случаи кардионарушений, уменьшаются проявления агрессии.

Мнение о зависимости самочувствия людей от магнитных бурь подтверждается статистическими данными: например, количество людей, госпитализированных "скорой помощью", и число обострений сердечно-сосудистых заболеваний явно возрастает после магнитной бури. Однако ученые считают, что доказательств собрано еще недостаточно, поскольку не обнаружен сам механизм реагирования организмом на солнечную активность.
Рассматривается, в частности, такая точка зрения, что организм улавливает инфразвуковые колебания – звуковые волны с частотами менее одного герца, близкими к собственной частоте многих внутренних органов. Инфразвук, который, возможно, излучается активной ионосферой, может резонансным образом воздействовать на сердечно-сосудистую систему человека.

В целом магнитосфера и ионосфера Земли неплохо защищают нас от космических угроз, но в настоящее время отмечается тенденция к увеличению влияния солнечной активности, поскольку магнитное поле Земли ослабляется – более чем на 10% за последние полвека, и одновременно усиливается магнитный поток Солнца.

А вот во второй половине XVII века, во время так называемого минимума Маундера , солнечных пятен практически не наблюдалось в течение нескольких десятилетий. Однако идеальным для жизни этот период назвать трудно: в те времена в Европе установилась аномально холодная погода. Случайно это совпадение или нет – непонятно. В более ранней истории отмечались и периоды аномально высокой солнечной активности. Так, в некоторые годы первого тысячелетия нашей эры полярные сияния постоянно наблюдались в Южной Европе, свидетельствуя о частых магнитных бурях, а Солнце выглядело помутневшим, возможно, из-за наличия на его поверхности огромного солнечного пятна или корональной дыры – еще одного объекта, вызывающего повышенную геомагнитную активность. Начнись такой период непрерывной солнечной активности сегодня, связь и транспорт, а с ними вся мировая экономика оказались бы в тяжелейшем положении.
Варвара ПРАЙС