Определение функции распределения. Непрерывная случайная величина, функция распределения и плотность вероятности Как найти значение функции распределения случайной величины

Тема №11

На практике для задания случайных величин общего вида обычно используется функция распределения.

Вероятность того, что случайная величина х примет определенное значение х 0 , выражается через функцию распределения по формуле

р (х = х 0) = F(x 0 +0) – F(x 0). (3)

В частности, если в точке х = х 0 функция F(x) непрерывна, то

р (х = х 0) =0.

Случайная величина х с распределением р(А) называется дискретной, если на числовой прямой существует конечное или счетное множество W, такое, что р (W,) = 1.

Пусть W = {x 1 , x 2 ,…} и p i = p ({x i }) = p (x = x i ), i = 1,2,….Тогда для любого борелевского множества А вероятность р(А) определяется однозначно формулой

Положив в этой формуле А = {x i / x i < x}, x Î R , получим формулу для функции распределения F(x) дискретной случайной величины х :

F(x) = p (x < x ) =. (5)

График функции F(x) представляет собой ступенчатую линию. Скачки функции F(x) в точках х = х 1 , х 2 …(x 1 равны соответствующим вероятностям р 1 , p 2 , … .

Пример 1. Найдите функцию распределения

дискретной случайной величины х из примера 1§ 13.

Используя функцию распределения, вычислите

вероятности событий: х < 3, 1 £ x < 4, 1 £ x £ 3.

F(x)
0 х 1 х 2 х 3 х 4 х
Решение. Используя данные из таблицы,

полученной в § 13, и формулу (5), получим

функцию распределения:

По формуле (1) Р(x < 3) = F(3) = 0,1808; по формуле (2)

р(1 £ x < 4) = F (4) – F(1) = 0,5904 – 0,0016 = 0,5888;

p (1 £ x £ 3) = p (1 £ x <3) + p(x = 3) = F(3) – F(1) + F(3+0) – F(3) =

F(3+0) – F(1) = 0,5904 – 0,0016 = 0,5888.

Пример 2. Дана функция

Является ли функция F(x) функцией распределения некоторой случайной величины? В случае положительного ответа найдите . Построить график функции F(x).

Решение. Для того чтобы наперед заданная функция F(x) являлась функцией распределения некоторой случайной величины х, необходимо и достаточно выполнение следующих условий (характеристических свойств функции распределения):

1. F(x) – неубывающая функция.

3. При любом х Î R F(x – 0) = F(x ).

Для заданной функции F(x) выполнение

этих условий очевидно. Значит,

F(x) – функция распределения.

Вероятность вычисляем по

формуле (2):

График функции F(x ) представлен на рисунке 13.

Пример 3. Пусть F 1 (x ) и F 2 (x ) – функции распределения случайных величин х 1 и х 2 соответственно, а 1 и а 2 – неотрицательные числа, сумма которых равна 1.

Доказать, что F(x ) = a 1 F 1 (x ) + a 2 F 2 (x ) является функцией распределения некоторой случайной величины х .



Решение. 1) Так как F 1 (x ) и F 2 (x ) – неубывающие функции и а 1 ³ 0, а 2 ³ 0, то a 1 F 1 (x ) и a 2 F 2 (x ) - неубывающие, следовательно, их сумма F(x ) тоже неубывающая.

3) При любом х Î R F(x - 0) = a 1 F 1 (x - 0) + a 2 F 2 (x - 0)= a 1 F 1 (x ) + a 2 F 2 (x ) = F(x ).

Пример 4. Дана функция

Является ли F(x) функцией распределения случайной величины?

Решение. Легко заметить, что F(1) = 0,2 > 0,11 = F(1,1). Следовательно, F(x ) не является неубывающей, а значит, не является функцией распределения случайной величины. Заметим, что остальные два свойства для данной функции справедливы.

Контрольное задание №11

1. Дискретная случайная величина х

x ) и, используя ее, найдите вероятности событий: а) –2 £ х < 1; б) ½х ½£ 2. Постройте график функции распределения.

3. Дискретная случайная величина х задана таблицей распределения:

x i
p i 0,05 0,2 0,3 0,35 0,1

Найдите функцию распределения F(x ) и найдите вероятности следующих событий: а) x < 2; б) 1 £ х < 4; в) 1 £ х £ 4; г) 1 < x £ 4; д) х = 2,5.

4. Найдите функцию распределения дискретной случайной величины х , равной числу выпавших очков при одном бросании игральной кости. Используя функцию распределения, найдите вероятность того, что выпадет не менее 5 очков.

5. Производятся последовательные испытания 5 приборов на надежность. Каждый следующий прибор испытывается только в том случае, если предыдущий оказался надежным. Составьте таблицу распределения и найдите функцию распределения случайного числа испытаний приборов, если вероятность выдержать испытания для каждого прибора 0,9.

6. Задана функция распределения дискретной случайной величины х :

а) Найдите вероятность события 1 £ х £ 3.

б) Найдите таблицу распределения случайной величины х .

7. Задана функция распределения дискретной случайной величины х :

Составьте таблицу распределения данной случайной величины.

8. Монету бросают n раз. Составьте таблицу распределения и найдите функцию распределения числа появлений герба. Постройте график функции распределения при n = 5.

9. Монету бросают, пока не выпадет герб. Составьте таблицу распределения и найдите функцию распределения числа появлений цифры.

10. Снайпер стреляет по цели до первого попадания. Вероятность промаха при отдельном выстреле равна р . Найдите функцию распределения числа промахов.

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

Чтобы найти функции распределения случайных величин и их переменных, необходимо изучить все особенности данной области знаний. Существует несколько различных методов для нахождения рассматриваемых значений, включая изменение переменной и генерирование момента. Распределение - такое понятие, в основу которого легли такие элементы, как дисперсия, вариации. Однако они характеризуют только степень размаха рассеяния.

Более важными функциями случайных величин являются те, которые связаны и независимы, и одинаково распределены. Например, если X1 - вес случайно выбранного индивидуума из популяции самцов, X2 - вес другого, ..., а Xn - вес еще одного человека из мужского населения, тогда, необходимо узнать, как случайная функция X распределяется. В этом случае применима классическая теорема, называемая центральной предельной. Она позволяет показать, что при больших n функция следует стандартным распределениям.

Функции одной случайной переменной

Центральная предельная теорема предназначена для аппроксимации дискретных рассматриваемых значений, таких как биномиальное и Пуассона. Функции распределения случайных величин, рассматриваются, в первую очередь, на простых значениях одной переменной. Например, если X является непрерывной случайной величиной, имеющей собственное распределение вероятности. В данном случае исследуется, как найти функцию плотности Y, используя два разных подхода, а именно метод функции распределения и изменения переменной. Сначала рассматриваются только взаимно однозначные значения. Затем необходимо модифицировать технику изменения переменной, чтобы найти ее вероятность. Наконец, нужно узнать, как кумулятивного распределения может помочь моделировать случайные числа, которые следуют за определенными последовательными схемами.

Методика распределения рассматриваемых значений

Метод функции распределения вероятностей случайной величины применим для того, чтобы найти ее плотность. При использовании этого способа вычисляется кумулятивное значение. Затем, дифференцируя его, можно получить плотность вероятности. Теперь, при наличии метода функции распределения, можно рассмотреть еще несколько примеров. Пусть X - непрерывная случайная величина с определенной плотностью вероятности.

Какова функция плотности вероятности от x2? Если посмотреть или построить график функции (сверху и справа) у = х2, можно отметить, что она является возрастающей X и 0

В последнем примере большую осторожность использовали для индексирования кумулятивных функций и плотности вероятности либо с помощью X, либо с Y, чтобы указать, к какой случайной переменной они принадлежали. Например, при нахождении кумулятивной функции распределения Y получили X. Если необходимо найти случайную величину X и ее плотность, то ее просто нужно дифференцировать.

Техника смены переменных

Пусть X - непрерывная случайная величина заданная функцией распределения с общим знаменателем f (x). В этом случае, если поместить значение y в X = v (Y), то получится значение x, например v (y). Теперь, нужно получить функцию распределения непрерывной случайной величины Y. Где первое и второе равенство имеет место из определения кумулятивной Y. Третье равенство выполняется потому, что части функции, для которой u (X) ≤ y, также верно, что X ≤ v (Y). И последнее выполняется для определения вероятности в непрерывной случайной величине X. Теперь нужно взять производную от FY (y), кумулятивной функции распределения Y, чтобы получить плотность вероятности Y.

Обобщение для функции уменьшения

Пусть X - непрерывная случайная величина с общим f (x), определенная над c1

Для решения этого вопроса можно собирать количественные данные и использовать эмпирическую кумулятивную функцию распределения. Обладая этой информацией и апеллируя ею, нужно комбинировать образцы средств, стандартные отклонения, медиаданные и так далее.

Аналогично даже довольно простая вероятностная модель может иметь огромное количество результатов. Например, если перевернуть монету 332 раза. Тогда число получаемых результатов от переворотов больше, чем у google (10100) - число, но не менее 100 квинтиллионов раз выше элементарных частиц в известной вселенной. Не интересен анализ, который дает ответ на каждый возможный результат. Потребуется более простая концепция, такая ​​как количество головок или самый длинный ход хвостов. Чтобы сосредоточить внимание на вопросах, представляющих интерес, принимается определенный результат. Определение в данном случае следующее: случайная величина является вещественной функцией с вероятностным пространством.

Диапазон S случайной величины иногда называют пространством состояний. Таким образом, если X - рассматриваемое значение, то так N = X2, exp ↵X, X2 + 1, tan2 X, bXc и так далее. Последнее из них, округляя X до ближайшего целого числа, называют функцией пола.

Функции распределения

Как только определена интересующая функция распределения случайной величины х, вопрос обычно становится следующим: «Каковы шансы, что X попадает в какое-то подмножество значений B?». Например, B = {нечетные числа}, B = {больше 1} или B = {между 2 и 7}, чтобы указать эти результаты, которые имеют X, значение случайной величины, в подмножестве А. Таким образом, в приведенном выше примере можно описать события следующим образом.

{X - нечетное число}, {X больше 1} = {X> 1}, {X находится между 2 и 7} = {2

Случайные переменные и функции распределения

Таким образом, можно вычислить вероятность того, что функция распределения случайной величины x примет значения в интервале путем вычитания. Необходимо подумать о включении или исключении конечных точек.

Будем называть случайную переменную дискретной, если она имеет конечное или счетное бесконечное пространство состояний. Таким образом, X - число головок на трех независимых флипсах смещенной монеты, которая поднимается с вероятностью p. Нужно найти кумулятивную функцию распределения дискретной случайной величины FX для X. Пусть X - количество пиков в коллекции из трех карт. То Y = X3 через FX. FX начинается с 0, заканчивается на 1 и не уменьшается с увеличением значений x. Кумулятивная FX функция распределения дискретной случайной величины X является постоянной, за исключением прыжков. При скачке FX является непрерывной. Доказать утверждение о правильной непрерывности функции распределения из свойства вероятности можно с помощью определения. Звучит оно так: постоянная случайная величина имеет кумулятивную FX, которая дифференцируема.

Чтобы показать, как это может произойти, можно привести пример: мишень с единичным радиусом. Предположительно. дротик равномерно распределяется на указанную область. Для некоторого λ> 0. Таким образом, функции распределения непрерывных случайных величин плавно увеличиваются. FX обладает свойствами функции распределения.

Человек ждет автобуса на остановке, пока тот не прибудет. Решив для себя, что откажется, когда ожидание достигнет 20 минут. Здесь необходимо найти кумулятивную функцию распределения для T. Время, когда человек еще будет находиться на автовокзале или не уйдет. Несмотря на то, что кумулятивная функция распределения определена для каждой случайной величины. Все равно достаточно часто будут использоваться другие характеристики: масса для дискретной переменной и функция плотности распределения случайной величины. Обычно выводится значение через одно из этих двух значений.

Массовые функции

Эти значения рассматриваются следующими свойствами, которые имеют общий (массовый характер). Первое основано на том, что вероятности не отрицательны. Второе следует из наблюдения, что набор для всех x=2S, пространство состояний для X, образует разбиение вероятностной свободы X. Пример: броски необъективной монеты, результаты которой независимы. Можно продолжать выполнять определенные действия, пока не получится бросок голов. Пусть X обозначает случайную величину, которая дает количество хвостов перед первой головой. А p обозначает вероятность в любом заданном действии.

Итак, массовая функция вероятности имеет следующие характерные признаки. Поскольку члены образуют численную последовательность, X называется геометрической случайной величиной. Геометрическая схема c, cr, cr2,. , crn имеет сумму. И, следовательно, sn имеет предел при n 1. В этом случае бесконечная сумма является пределом.

Функция массы выше образует геометрическую последовательность с отношением. Следовательно, натуральных чисел a и b. Разность значений в функции распределения равна значению массовой функции.

Рассматриваемые значения плотности имеют определение: X - случайная величина, распределение FX которой имеет производную. FX, удовлетворяющая Z xFX (x) = fX (t) dt-1, называется функцией плотности вероятности. А X называется непрерывной случайной величиной. В основной теореме исчисления функция плотности является производной распределения. Можно вычислить вероятности путем вычисления определенных интегралов.

Поскольку собираются данные по нескольким наблюдениям, то должно рассматриваться более одной случайной величины за раз, чтобы моделировать экспериментальные процедуры. Следовательно, множество этих значений и их совместное распределение для двух переменных X1 и X2 означает просмотр событий. Для дискретных случайных величин определяются совместные вероятностные массовые функции. Для непрерывных рассматриваются fX1, X2, где совместная плотность вероятности удовлетворяется.

Независимые случайные переменные

Две случайные величины X1 и X2 независимы, если любые два связанных с ними события такие же. В словах вероятность того, что два события {X1 2 B1} и {X2 2 B2} происходят одновременно, y равно произведению переменных указанных выше, что каждая из них происходит индивидуально. Для независимых дискретных случайных величин имеется совместная вероятностная массовая функция, которая является произведением предельного объема ионов. Для непрерывных случайных величин являющихся независимыми, совместная функция плотности вероятности - произведение значений предельной плотности. В заключение рассматриваются n независимые наблюдения x1, x2,. , xn, возникающие из неизвестной плотности или массовой функции f. Например, неизвестный параметр в функциях для экспоненциальной случайной величины, описывающей время ожидания автобуса.

Имитация случайных переменных

Основная цель этой теоретической области - предоставить инструменты, необходимые для разработки умозаключительных процедур, основанных на обоснованных принципах статистической науки. Таким образом, одним из очень важных вариантов применения программного обеспечения является способность генерировать псевдоданные для имитации фактический информации. Это дает возможность тестировать и совершенствовать методы анализа перед необходимостью использования их в реальных базах. Это требуется для того, чтобы исследовали свойства данных посредством моделирования. Для многих часто используемых семейств случайных величин R предоставляет команды для их создания. Для других обстоятельств понадобятся методы моделирования последовательности независимых случайных величин, которые имеют общее распределение.

Дискретные случайные переменные и образец Command. Команда sample используется для создания простых и стратифицированных случайных выборок. В результате, если вводится последовательность x, sample (x, 40) выбирает 40 записей из x таким образом, что все варианты размера 40 имеют одинаковую вероятность. Это использует команду R по умолчанию для выборки без замены. Можно использовать также для моделирования дискретных случайных величин. Для этого нужно предоставить пространство состояний в векторе x и массовой функции f. Вызов для replace = TRUE указывает, что сэмплирование происходит с заменой. Затем, чтобы дать образец из n независимых случайных величин, имеющих общую массовую функцию f, используется образец (x, n, replace = TRUE, prob = f).

Определено, что 1 является наименьшим представленным значением, а 4 является наибольшим из всех. Если команда prob = f опущена, то образец будет выбирать равномерно из значений в векторе x. Проверить симуляцию против массовой функции, которая генерировала данные, можно обратив внимание на знак двойного равенства, ==. И пересчитав наблюдения, которые принимают каждое возможное значение для x. Можно сделать таблицу. Повторить это для 1000 и сравнить моделирование с соответствующей функцией массы.

Иллюстрирование трансформации вероятности

Сначала смоделировать однородные функции распределения случайных величин u1, u2,. , un на интервале . Около 10 % чисел должно находиться в пределах . Это соответствует 10 % симуляций на интервале для случайной величины с показанной функцией распределения FX. Точно так же около 10 % случайных чисел должно находиться в интервале . Это соответствует 10 % симуляций на интервале случайной величины с функцией распределения FX. Эти значения на x ось может быть получена из взятия обратной от FX. Если X - непрерывная случайная величина с плотностью fX, положительной всюду в своей области, то функция распределения строго возрастает. В этом случае FX имеет обратную функцию FX-1, известную как функция квантиля. FX (x) u только тогда, когда x FX-1 (u). Преобразование вероятности следует из анализа случайной переменной U = FX (X).

FX имеет диапазон от 0 до 1. Он не может принимать значения ниже 0 или выше 1. Для значений u между 0 и 1. Если можно моделировать U, то необходимо имитировать случайную величину с распределением FX через функцию квантиля. Взять производную, чтобы увидеть, что плотность u варьируется в пределах 1. Поскольку случайная величина U имеет постоянную плотность по интервалу своих возможных значений, она называется равномерной на отрезке . Он моделируется в R с помощью команды runif. Идентичность называется вероятностным преобразованием. Видно, как оно работает в примере с дротильной доской. X между 0 и 1, функция распределения u = FX (x) = x2, и, следовательно, функция квантиля x = FX-1 (u). Можно моделировать независимые наблюдения расстояния от центра панели дротика, и создавая при этом равномерные случайные величины U1, U2,. , Un. Функция распределения и эмпирическая основаны на 100 симуляциях распределения дартс-доски. Для экспоненциальной случайной величины, предположительно u = FX (x) = 1 - exp (- x), и, следовательно, x = - 1 ln (1 - u). Иногда логика состоит из эквивалентных утверждений. В этом случае нужно объединить две части аргумента. Тождество с пересечением аналогично для всех 2 {S i i} S, вместо некоторого значения. Объединение Ci равно пространству состояний S и каждая пара взаимно исключена. Поскольку Bi - разбита на три аксиомы. Каждая проверка основана на соответствующей вероятности P. Для любого подмножества. Используя тождество, чтобы убедиться, что ответ не зависит от того, включены ли конечные точки интервала.

Экспоненциальная функция и ее переменные

Для каждого результата во всех событиях в конечном счете используется второе свойство непрерывности вероятностей, которое считается аксиоматическим. Закон распределения функции случайной величины здесь показывает, что каждой свое решение и ответ.

В предыдущем n° мы ввели в рассмотрение ряд распределения как исчерпывающую характеристику (закон распределения) прерывной случайной величины. Однако эта характеристика не является универсальной; она существует только для прерывных случайных величин. Нетрудно убедиться, что для непрерывной случайной величины такой характеристики построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, сплошь заполняющих некоторый промежуток (так называемое «счетное множество»). Составить таблицу, в которой были бы перечислены все возможные значения такой случайной величины, невозможно. Кроме того, как мы увидим в дальнейшем, каждое отдельное значение непрерывной случайной величины обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для прерывной величины. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для непрерывной величины существует «распределение вероятностей», хотя и не в том смысле, как для прерывной.

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события , а вероятностью события , где – некоторая текущая переменная. Вероятность этого события, очевидно, зависит от , есть некоторая функция от . Эта функция называется функцией распределения случайной величины и обозначается :

. (5.2.1)

Функцию распределения иногда называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как прерывных, так и непрерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.

Сформулируем некоторые общие свойства функции распределения.

1. Функция распределения есть неубывающая функция своего аргумента, т.е. при .

2. На минус бесконечности функция распределения равна нулю:.

3. На плюс бесконечности функция распределения равна единице: .

Не давая строгого доказательства этих свойств, проиллюстрируем их с помощью наглядной геометрической интерпретации. Для этого будем рассматривать случайную величину как случайную точку на оси Ох (рис. 5.2.1), которая в результате опыта может занять то или иное положение. Тогда функция распределения есть вероятность того, что случайная точка в результате опыта попадет левее точки .

Будем увеличивать , т. е. перемещать точку вправо по оси абсцисс. Очевидно, при этом вероятность того, что случайная точка попадет левее , не может уменьшиться; следовательно, функция распределения с возрастанием убывать не может.

Чтобы убедиться в том, что , будем неограниченно перемещать точку влево по оси абсцисс. При этом попадание случайной точки левее в пределе становится невозможным событием; естественно полагать, что вероятность этого события стремится к нулю, т.е. .

Аналогичным образом, неограниченно перемещая точку вправо, убеждаемся, что , так как событие становится в пределе достоверным.

График функции распределения в общем случае представляет собой график неубывающей функции (рис. 5.2.2), значения которой начинаются от 0 и доходят до 1, причем в отдельных точках функция может иметь скачки (разрывы).

Зная ряд распределения прерывной случайной величины, можно легко построить функцию распределения этой величины. Действительно,

,

где неравенство под знаком суммы указывает, что суммирование распространяется на все те значения , которые меньше .

Когда текущая переменная проходит через какое-нибудь из возможных значений прерывной величины , функция распределения меняется скачкообразно, причем величина скачка равна вероятности этого значения.

Пример 1. Производится один опыт, в котором может появиться или не появиться событие . Вероятность события равна 0,3. Случайная величина – число появлений события в опыте (характеристическая случайная величина события ). Построить её функцию распределения.

Решение. Ряд распределения величины имеет вид:

Построим функцию распределения величины :

График функции распределения представлен на рис. 5.2.3. В точках разрыва функция принимает значения, отмеченные на чертеже точками (функция непрерывна слева).

Пример 2. В условиях предыдущего примера производится 4 независимых опыта. Построить функцию распределения числа появлений события .

Решение. Обозначим – число появлений события в четырех опытах. Эта величина имеет ряд распределения

Построим функцию распределения случайной величины :

3) при ;

На практике обычно функция распределения непрерывной случайной величины представляет собой функцию, непрерывную во всех точках, как это показано на рис. 5.2.6. Однако можно построить примеры случайных величин, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых функция распределения не везде является непрерывной, а в отдельных точках терпит разрыв (рис. 5.2.7).

Такие случайные величины называются смешанными. В качестве примера смешанной величины можно привести площадь разрушений, наносимых цели бомбой, радиус разрушительного действия которой равен R (рис. 5.2.8).

Значения этой случайной величины непрерывно заполняют промежуток от 0 до , осуществляющиеся при положениях бомбы типа I и II, обладают определенной конечной вероятностью, и этим значениям соответствуют скачки функции распределения, тогда как в промежуточных значениях (положение типа III) функция распределения непрерывна. Другой пример смешанной случайной величины – время T безотказной работы прибора, испытываемого в течение времени t. Функция распределения этой случайной величины непрерывна всюду, кроме точки t.

Функцией распределения называют функцию F(х), определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньше x, т.е.

F(x) = P(X < x).

Геометрически: F(x) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки x. Иногда вместо термина "Функция распределения" используют термин "Интегральная функция".

Случайную величину называют непрерывной, если её функция распределения есть непрерывная, кусочно - дифференцируемая функция с непрерывной производной.

Свойства функции распределения

  • 1) Значения функции распределения принадлежат отрезку :
  • 0 F(x) 1.
  • 2) F(x) - неубывающая функция, т.е. F(x2)F(x1), если x2 > x1.
  • 3) Вероятность того, что случайная величина Х примет значение, заключённое в интервале (a, b), равна приращению функции распределения на этом интервале:

P(a ? X < b) = F(b) - F(a).

  • 4) Вероятность того, что непрерывная, случайная величина Х примет одно определённое значение, равна нулю. Тем самым имеет смысл рассматривать вероятность попадания непрерывной случайной величины в интервал, пусть даже сколько угодно малый.
  • 5) Если возможное значение случайной величины Х принадлежит интервалу (a, b) ,то:

F(x) = 0, при x ? a;

F(x) = 1, при x b.

6) Если возможное значение непрерывной случайной величины расположены на всей оси, то

График функции распределения

График функции распределения непрерывной случайной величины, возможные значения которой принадлежат интервалу (a, b) изображен на рис. 1.

График функции распределения дискретной случайной величины X, возможные значения которой заданы таблицей, изображен на рис. 2.

Пример. Построить график функции

Найти вероятность того, что в результате испытания случайная величина Х примет значение, заключенное в интервале (2; 3).

Решение. График функции изображен на рис. 3. Вероятность того, что случайная величина Х примет значение, заключённое в интервале (2, 3), равна приращению функции распределения на этом интервале:

P(2 ? X < 3) = F(3) - F(2) = 1/2.

Пример. Построить график функции распределения дискретной случайной величины X заданной таблицей: