Кр 8 молекулярно кинетическая теория. Контрольная работа «Основы молекулярно-кинетической теории идеального газа» материал по физике (10 класс) на тему

Молекулярная физика и термодинамика - разделы физики, в которых изучаются макроскопические (параметры) процессы в телах, связанные с огромным числом атомов и молекул, содержащихся в телах.

Для исследования этих процессов применяют два метода: статистический (молекулярно-кинетический) и термодинамический.

Молекулярная физика изучает строение и свойства вещества, исходя из молекулярно – кинетических представлений, основывающихся на том что:

1) все тела состоят из молекул

2) молекулы непрерывно и беспорядочно движутся

3) между молекулами существуют силы притяжения и отталкивания - межмолекулярные силы .

Статистический метод основан на том, что свойства макроскопической системы определяются, в конечном счете, свойствами частиц системы.

Термодинамика – изучает общие свойства макроскопических систем, находящихся в состоянии термодинамического равновесия, и процессы перехода между этими состояниями и не рассматривает микропроцессы, которые лежат в основе этих превращений. Этим термодинамический метод отличается от статистического метода. Основа термодинамического метода – определение состояния термодинамической системы.

Термодинамическая система – совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией между собой и внешней средой.

Состояние системы задается термодинамическими параметрами: p, V, T.

Применяют две шкалы температуры: Кельвина и Цельсия.

T = t + 273 0 - связь между температурами t и Т

где t - измеряется в Цельсиях 0 С ; Т - измеряется в кельвинах К.

В молекулярно – кинетической теории пользуются моделью идеального газа, согласно которой:

Собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда

Между молекулами газа отсутствуют силы взаимодействия

Столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Состояние идеального газа характеризуется 3 параметрами: p, V, T.

- уравнение Менделеева - Клайперона

или уравнение состояния идеального газа

здесь: - количество вещества [моль ]

R = 8,31 - универсальная газовая постоянная

Опытным путем был установлен целый ряд законов, описывающих поведение идеальных газов.

Рассмотрим эти законы:

1) T const изотермический процесс

р

T –растет pV = const -

закон Бойля – Мариотта

2) p = const - изобарный процесс

p 2 -const - закон Гей - Люссака

p 1 p 2

p 1 >p 2

3) V const изохорный процесс

р

V 1 - закон Шарля

V 1 >V 2

4) Закон Авогадро : моли любых газов при одинаковой температуре и давлении имеют одинаковые объемы.

При нормальных условиях: V = 22,4×10 -3 м 3 /моль

В 1 моле различных веществ содержится одно и то же число молекул, называемое постоянной Авогадро

N A = 6,02×10 23 моль -1

5) Закон Дальтона : давление смеси идеальных газов равно сумме парциальных давлений, входящих в нее газов.

p = p 1 + p 2 + . . . + p n – закон Дальтона

где p 1 , p 2 , . . . p n – парциальные давления.

- постоянная Больцмана k = 1,38 ×10 -23 Дж/К

При одинаковых температурах и давлении все газы в единице объема содержат одинаковое число молекул.

Число молекул, содержащихся, в 1м 3 газа при нормальных условиях называется числом Лошмидта N L = 2,68×10 25 м 3

Нормальные условия: р 0 = 1,013×10 3 Па

V 0 = 22,4×10 -3 м 3 /моль

Т 0 = 273 К

R = 8,31 Дж/мольК

На основе использования основных положений молекулярно-кинетической теории было получено уравнение, которое позволяет вычислить давление газа, если известны m - масса молекулы газа, среднее значение квадрата скорости u 2 и концентрация n молекул.


Тогда - первое следствие из основного уравнения МКТ

- концентрация молекул

Температура – есть мера средней кинетической энергии молекул.

Тогда - второе следствие из основного уравнения МКТ

Теперь запишем - среднюю квадратичную скорость движения молекул

Средняя арифметическая скорость движения молекул определяется по формуле

Молекулы, беспорядочно двигаясь, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь, который называется длиной свободного пробега .

Длина свободного пробега все время меняется, поэтому следует говорить о средней длине свободного пробега , как о среднем пути, проходимом молекулой между двумя последовательными соударениями

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда являются абсолютно упругими;

4) время столкновения молекул друг с другом пренебрежимо мало по сравнению со временем свободного пробега молекул.

Рассмотрим экспериментальные законы, описывающие поведе-ние идеального газа:

p 1) закон Бойля-Мариотта : для данной

массы газа при постоянной температуре про-

изведение давления газа на его объем есть ве-

личина постоянная:

pV = const. (9.1.1)

V Процесс, протекающий при постоянной тем-пературе, называется изотермическим. Кри-вая, изображающая зависимость между пара-

метрами p и V , характеризующими состояние газа при постоянной температуре называется изотермой (рис. 9.1.1).

2) закон Гей − Люссака : объем данной V

массы газа при постоянном давлении изменя-ется линейно с температурой.

273,15 1 К − 1 .

Процесс, протекающий при постоянном давлении, называется изобарическим. На диаграмме в координатах V , Т этот процесс изо-бражается прямой линией, называемой изобарой (рис. 9.1.2).

3) закон Шарля : давление данной массы газа при постоянном объеме изменяется линейно с температурой.

м 3 /моль. В одном моле различных веществ содержится одно и тоже число молекул, равное постоянной Авогадро : N A = 6,02 · 10 23 моль − 1 .

5) закон Дальтона : давление смеси идеальных газов равно сум-

Парциальное давление −давление,которое оказывал бы газ,входящий в состав газовой смеси, если бы он один занимал объем, равный объему смеси при той же температуре.

Состояние некоторой массы газа определяется тремя термоди-намическими параметрами: давлением, объемом и температурой, ме-жду которыми существует связь, называемая уравнением состояния f (p , V , T ) = 0,где каждая из переменных является функцией двух дру-гих. Французский физик и инженер Клапейрон, объединив законы Бойля-Мариотта, Шарля и Гей − Люссака, вывел уравнение состояния идеального газа (уравнение Клапейрона ):для данной массы газа вели-

чина pV /T остается постоянной, т. е.

pV = const . (9.1.5)
T

Менделеев Д. И. объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение Клапейрона к одному молю газа и ис-пользовав молярный объем V m . Согласно закону Авогадро, при одина-ковых давлении и температуре, моли всех газов занимают одинаковый молярный объем, поэтому газовая постоянная будет одинаковой для всех газов. Эту общую для всех газов постоянную обозначили R = = 8,31 Дж/(кг · К) и назвали универсальной газовой постоянной . Таким образом, уравнение Клапейрона приобрело вид

где ν = M m − количество вещества; m − масса газа; М − молярная мас-

Молярной массой называется масса1моля вещества,и она равна

Пользуются также другой формой уравнения состояния идеаль-ного газа, вводя постоянную Больцмана k = R /N A = 1,38 · 10 − 23 Дж/К:

pV RT pV N A kT pV = NkT
p = N kT p = nkT , (9.1.10)
V
где n = N /V − концентрации молекул газа.
Теперь рассмотрим идеальный газ и оп-
S ределим давление газа на основе молекулярно-
r кинетической теории. Представим себе, что
m υ x молекулы содержатся в прямоугольном сосуде,
грани которого имеют площадь S , а длина его
ребер равна l . Согласно этой модели, давление
газа на стенки сосуда обусловлено столкнове-
ниями молекул с ними. Рассмотрим стенку
l x площадью S с левой стороны сосуда и выясним,
что происходит, когда одна молекула ударяется
Рис. 9.1.4 об нее. Эта молекула действует на стенку, а

стенка в свою очередь действует на молекулу с равной по величине и противоположной по направлению силой. Величина этой силы, со-гласно второму закону Ньютона, равна скорости изменения импульса молекулы, т. е.

Эта молекула будет много раз сталкиваться со стенкой, причем столк-новения будут происходить через промежуток времени, который тре-буется молекуле для того, чтобы пересечь сосуд и вернуться обратно,

т. е. пройти расстояние 2l . Тогда 2l = υ x t ,откуда
t = 2l x . (9.1.13)
При этом средняя сила равна
p 2 m υ x m υ 2
F = = = 0 x . (9.1.14)
t 2l υ x
l

Во время движения по сосуду туда и обратно молекула может сталкиваться с верхними и боковыми стенками сосуда, однако про-екция ее импульса на ось Ox при этом остается без изменения (т. к. удар абсолютно упругий). Чтобы вычислить силу, действующую со стороны всех молекул в сосуде, просуммируем вклады каждой из них.

Для любой скорости выполняется соотношение υ 2 = υ 2 x + υ 2 y + υ 2 z , или

υ 2 = υ 2 x + υ 2 y + υ 2 z . Так как молекулы движутся хаотически, то все направления движения равноправные и υ 2 x = υ 2 y = υ 2 z . Значит

Физика. 10 класс. Дидактические материалы. Марон А.Е., Марон Е.А.

М.: 2014. - 1 58с. 2-е изд., стер. - М.: 2005. - 1 58с.

Данное пособие включает тесты для самоконтроля, самостоятельные работы, разноуровневые контрольные работы. Предлагаемые дидактические материалы составлены в полном соответствии со структурой и методологией учебников В.А. Касьянова «Физика. Базовый уровень. 10 класс» и «Физика. Углубленный уровень. 10 класс».

Формат: pdf (2014 , 158с.)

Размер: 2 Мб

Смотреть, скачать: 02

Формат: pdf (2005 , 158с.)

Размер: 4,3 Мб

Скачать: 02 .09.2016г, ссылки удалены по требованию изд-ва "Дрофа" (см. примечание)

Содержание
Предисловие 3
ТЕСТЫ ДЛЯ САМОКОНТРОЛЯ
ТС-1. Перемещение. Скорость. Равномерное прямолинейное движение 4
ТС-2. Прямолинейное движение с постоянным ускорением 5
ТС-3. Свободное падение. Баллистическое движение 7
ТС-4. Кинематика периодического движения 8
ТС-5. Законы Ньютона 10
ТС-6. Силы в механике 11
ТС-7. Применение законов Ньютона 12
ТС-8. Закон сохранения импульса 14
ТС-9. Работа силы. Мощность 16
ТС-10. Потенциальная и кинетическая энергия 17
ТС-11. Закон сохранения механической энергии 18
ТС-12. Движение тел в гравитационном поле 20
ТС-13. Динамика свободных и вынужденных колебаний... 22
ТС-14. Релятивистская механика 23
ТС-15. Молекулярная структура вещества 24
ТС-16. Температура. Основное уравнение молекулярно-кинетической теории 26
ТС-17. Уравнение Клапейрона-Менделеева. Изопроцессы. . 27
ТС-18. Внутренняя энергия. Работа газа при изопроцессах. Первый закон термодинамики 29
ТС-19. Тепловые двигатели 30
ТС-20. Испарение и конденсация. Насыщенный пар. Влажность воздуха. Кипение жидкости 32
ТС-21. Поверхностное натяжение. Смачивание, капиллярность 33
ТС-22. Кристаллизация и плавление твердых тел 35
ТС-23. Механические свойства твердых тел 37
ТС-24. Механические и звуковые волны 39
ТС-25. Закон сохранения заряда. Закон Кулона 40
ТС-26. Напряженность электростатического поля 42
ТС-27. Работа сил электростатического поля. Потенциал электростатического поля 44
ТС-28. Диэлектрики и проводники в электростатическом поле 47
ТС-29. Электроемкость уединенного проводника и конденсатора. Энергия электростатического поля. . 49
САМОСТОЯТЕЛЬНЫЕ РАБОТЫ
СР-1. Равномерное прямолинейное движение 51
СР-2. Прямолинейное движение с постоянным ускорением 52
СР-3. Свободное падение. Баллистическое движение 53
СР-4. Кинематика периодического движения 54
СР-5. Законы Ньютона 56
СР-6. Силы в механике 57
СР-7. Применение законов Ньютона 58
СР-8. Закон сохранения импульса 59
СР-9. Работа силы. Мощность 61
СР-10. Потенциальная и кинетическая энергия. Закон сохранения энергии 62
СР-11. Абсолютно неупругое и абсолютно упругое столкновение 63
СР-12. Движение тел в гравитационном поле 64
СР-13. Динамика свободных и вынужденных колебаний. ... 66
СР-14. Релятивистская механика 67
СР-15. Молекулярная структура вещества 68
СР-16. Температура. Основное уравнение молекулярно-кинетической теории 69
СР-17. Уравнение Клапейрона-Менделеева. Изопроцессы. . 70
СР-18. Внутренняя энергия. Работа газа при изопроцессах. . 72
СР-19. Первый закон термодинамики 73
СР-20. Тепловые двигатели 74
СР-21. Испарение и конденсация. Насыщенный пар. Влажность воздуха 75
СР-22. Поверхностное натяжение. Смачивание, капиллярность 77
СР-23. Кристаллизация и плавление твердых тел. Механические свойства твердых тел 78
СР-24. Механические и звуковые волны 80
СР-25. Закон сохранения заряда. Закон Кулона 81
СР-26. Напряженность электростатического поля 83
СР-27. Работа сил электростатического поля. Потенциал... 84
СР-28. Диэлектрики и проводники в электростатическом поле 86
СР-29. Электроемкость. Энергия электростатического поля 87
КОНТРОЛЬНЫЕ РАБОТЫ
КР-1. Прямолинейное движение 89
КР-2. Свободное падение тел. Баллистическое движение... 93
КР-3. Кинематика периодического движения 97
КР-4. Законы Ньютона 101
КР-5. Применение законов Ньютона 105
КР-6. Закон сохранения импульса 109
КР-7. Закон сохранения энергии 113
КР-8- Молекулярно-кинетическая теория идеального газа 117
КР-9. Термодинамика 121
КР-10. Агрегатные состояния вещества 125
КР-11. Механические и звуковые волны 129
КР-12. Силы электромагнитного взаимодействия неподвижных зарядов 133
КР-13. Энергия электромагнитного взаимодействия неподвижных зарядов 137
ОТВЕТЫ
Тесты для самоконтроля 141
Самостоятельные работы 144
Контрольные работы 149
Список литературы 154

10 класс

Контрольная работа № 5

Вариант 1

25 м -3 .

3 -23

6 (м/с) 2 25 м -3 -26 кг?

25 м -3

3 -12 Па?

10 класс

Контрольная работа № 5

«Основы молекулярно-кинетической теории идеального газа»

Вариант 2

5 м 3 18 молекул?

5 3 м/с.

21 Дж.

3 H 8

10 класс

Контрольная работа № 5

«Основы молекулярно-кинетической теории идеального газа»

Вариант 1

1. Определите температуру водорода и среднюю квадратичную скорость его молекул при давлении 100 кПа и концентрации молекул 10 25 м -3 .

2. Сосуд, имеющий форму куба со стороной 1 м, содержит идеальный газ в количестве 10 -3 моль. Найдите давление газа, если масса одной молекулы 3 ∙ 10 -23 г и средняя скорость теплового движения молекул 500 м/с.

3. Под каким давлением находится газ в сосуде, если средний квадрат скорости его молекул 10 6 (м/с) 2 , концентрация молекул 3 ∙ 10 25 м -3 , а масса каждой молекулы 5 ∙ 10 -26 кг?

4. Концентрация молекул газа 4 ∙ 10 25 м -3 .Рачитайте давление газа при температуре 290 К.

5. Какое число молекул находится в сосуде объемом 5 м 3 при 300 К, если давление газа 10 -12 Па?

10 класс

Контрольная работа № 5

«Основы молекулярно-кинетической теории идеального газа»

Вариант 2

1. Какова средняя скорость теплового движения молекул, если при давлении 250 кПа газ массой 8 кг занимает объем 15 м 3 ?

2. Какое давление производят пары ртути в баллоне ртутной лампы вместимостью 3 · 10 -5 м 3 при300 К, если в ней содержится 10 18 молекул?

3. Определить плотность кислорода при давлении 1,3 ∙ 10 5 Па, если средняя квадратичная скорость его молекул равна 1,4 ∙ 10 3 м/с.

4. При какой температуре средняя кинетическая энергия молекул газа равна 10,35 ∙ 10 -21 Дж.

5. В резервуаре объемом 3000 л находится пропан (C 3 H 8 ), количество вещества которого 140 моль, а температура 300 К. Какое давление оказывает газ на стенки сосуда?


Молекулы в идеальном газе движутся хаотически. Движение одной молекулы характеризуют микроскопические параметры (масса молекулы, ее скорость, импульс, кинетическая энергия). Свойства газа как целого описываются с помощью макроскопических параметров (масса газа, давление, объем, температура). Молекулярно-кинетическая теория устанавливает взаимосвязь между микроскопическими и макроскопическими параметрами.

Число молекул в идеальном газе столь велико, что закономерности их поведения можно выяснить только с помощью статистического метода. Равномерное распределение в пространстве молекул идеального газа является наиболее вероятным состоянием газа, т. е. наиболее часто встречающимся.

Распределение молекул идеального газа по скоростям при определенной температуре является статистической закономерностью.

Наиболее вероятная скорость молекул - скорость, которой обладает максимальное число молекул. Стационарное равновесное состояние газа - состояние, в котором число молекул в заданном интервале скоростей остается постоянным.

Температура тела - мера средней кинетической энергии поступательного движения его молекул:

где черта сверху - знак усреднения по скоростям, k = 1,38 10 -23 Дж/К - постоянная Больцмана.

Единица термодинамической температуры - кельвин (К).

При абсолютном нуле температуры средняя кинетическая энергия молекул равна нулю.

Средняя квадратичная (тепловая) скорость молекул газа


где М - молярная масса, R = 8,31 Дж/(К моль) - молярная газовая постоянная.

Давление газа - следствие ударов движущихся молекул:


где n - концентрация молекул (число молекул в единице объема), E k - средняя кинетическая энергия молекулы.

Давление газа пропорционально его температуре :


Постоянная Лошмидта - концентрация идеального газа при нормальных условиях (атмосферное давление р= 1,01 10 5 Па и температура Т = 273 К):

Уравнение Клапейрона-Менделеева - уравнение состояния идеального газа, связывающее три макроскопических параметра (давление, объем, температуру) данной массы газа.


Изопроцесс - процесс, при котором один из макроскопических параметров состояния данной массы газа остается постоянным. Изотермический процесс - процесс изменения состояния определенной массы газа при постоянной температуре.

Закон Бойля-Мариотта : для газа данной массы при постоянной температуре:


где р 1 , р 2 , V 1 , V 2 - давление и объем газа в начальном и конечном состояниях

Изотерма - график изменения макроскопических параметров газа при изотермическом процессе. Изобарный процесс - процесс изменения состояния определенной массы газа при постоянном давлении.

Закон Гей-Люссака : для газа данной массы при постоянном давлении