Колебания нелинейных систем. Нелинейные колебания

Профессор, д. ф.м. н.

1. Введение

Переменные состояния. Оператор эволюции. Динамические системы (ДС). ДС с сосредоточенными и распределенными параметрами (ДССП и ДСРП). Математическая модель ДССП. Число степеней свободы. Обобщенные координаты и скорости. Фазовые пространства. Интегральные кривые и фазовые траектории. Классификация динамических систем. Методы теории нелинейных колебаний (классификация).

2. Колебания в линейных системах

Линейные автономные динамические системы с одной степенью свободы (линейный осциллятор). Фазовые портреты таких систем. Модели Ломки и Вольтерра. Плоскость параметров системы. Бифуркационные кривые. Неавтономные системы. Резонанс. Нормальные координаты. Колебания в линейных системах с двумя степенями свободы (связанные осцилляторы). Коэффициенты распределения, связанности и связи, графики Вина, внутренний резонанс. Вынужденные колебания в таких системах. Обобщение на n степеней свободы. Колебания в нормальных координатах. Параметрические колебания. Модели Хилла и Матье. Теорема Флоке.

3. Теория устойчивости ДС.

Понятие устойчивости по Ляпунову. Устойчивость равновесного состояния. Устойчивость периодического движения. Прямой метод Ляпунова. Метод первого приближения. Устойчивость линейных систем. Критерии устойчивости Рауса, Гурвица, Михайлова, Найквиста. Устойчивость неавтономных систем.

4. Аналитические методы

Особенности аналитических методов. Метод малого параметра Пуанкаре. Нерезонансные вынужденные колебания. Задача Дюффинга. Колебания при резонансе на основной гармонике и на субгармониках. Модель Дюффинга и нелинейный резонанс. Нелинейные фазовые колебания в циклических накопителях электронов. Собственные периодические колебания нелинейных систем. Вариационные методы. Метод Галеркина. Метод вариации параметров. Асимптотические методы. U-метод для автономных систем. Модель Ван-дер-Поля. Триодный генератор. Вращающаяся фазовая плоскость. Асимптотический метод для неавтономных систем. Эквивалентная линеаризация нелинейных систем. Метод усреднения. Перемещение Ван-дер-Поля. Нелинейный резонанс. Перекрытие нелинейных резонансов. Автоколебания в многочастотных системах. Вынужденная синхронизация. Конкуренция. Взаимная синхронизация мод.


5. Качественные методы

5.1. Фазовые портреты консервативных систем. Построение фазовых траекторий на основе энергетического баланса. Фазовые траектории в окрестности равновесного состояния. Типы движений в консервативных системах. Орбитная устойчивость. Неизохронность и ангармоничность нелинейных колебаний. Одночастичные движения в магнитной ловушке (электрон в продольном поле). Модель Вольтерра. Ансамбль нелинейных осцилляторов. Фазовый портрет перекрытия нелинейных резонансов.

5.2. Периодические автоколебания. Предельные циклы на фазовой плоскости. Зависимость формы автоколебаний от параметров системы. Релаксационные автоколебания. "Быстрые" и "медленные" движения. Качественные исследования разрывных колебаний. Модель релаксационного генератора.

5.3. Фазовые портреты равновесных диссипативных систем. Грубость динамической системы. Законы совместного существования особых точек. Основные бифуркации на плоскости. Индексы Пуанкаре. Обобщенная электронная схема с нелинейным элементом. Криотронные схемы. Триггерные ячейки памяти. Колебания в сверхпроводящих соленоидах.

6. Метод точечных преобразований.

Метод точечных преобразований при исследовании автоколебательных систем. Криотронный генератор. Гармонический осциллятор с нелинейным затуханием.

7. Применение качественных методов к исследованию неавтономных систем.

Синхронная многолистная фазовая плоскость. Субгармонические колебания в ферромагнитной пленке. Параметрическая неустойчивость. Бетатронные колебания в ускорителях с жесткой фокусировкой. Принцип автофазировки и синхротронные колебания в электронных ускорителях и накопителях.

8. Стохастическая динамика простых систем.

Точечные отображения. Бифуркация периодических движений. Гомоклинические структуры. Случайность в динамической системе. Стохастическая динамика одномерных отображений. Генератор шума, его статистическое описание. Пути возникновения странных аттракторов.

Литература

1. Мандельштам по колебаниям. М.: Наука, 1972.

2. , Хайкин колебаний. М.: Наука, 1964.

3. Стрелков в теорию колебаний. М.: Наука, 1964.

4. , Митропольский методы в теории нелинейных колебаний. М.: Наука, 1974.

5. Фомель теории нелинейных колебаний. Новосибирск: Изд-во НГУ, 1970.

6. Гольдин ускорителей. М.: Наука, 1983.

7. , Трубецков в теорию колебаний и волн. М.: Наука, 1984.

Нелинейные эффекты могут проявиться многими разнообразными способами. Классический пример - это нелинейная пружина, в которой восстанавливающая сила нелинейно зависит от растяжения. В случае симметричной нелинейности (одинаковый отклик при сжатии и растяжении) уравнение движения принимает вид

Если затухание отсутствует и имеются периодические решения, в которых при естественная частота увеличивается с амплитудой.

Рис. 1.7. Классическая резонансная кривая нелинейного осциллятора с жесткой пружиной в случае, когда колебания периодичны и имеют тот же период, что и вынуждающая сила (а и определяются в уравнении (1.2.4)).

Эта модель часто называется уравнением Дуффинга по имени изучавшего ее математика.

Если на систему воздействует периодическая сила, то в классической теории полагают, что и отклик будет периодическим. Резонанс нелинейной пружины при частоте отклика, совпадающей с частотой силы, показан на рис. 1.7. Как показано на этом рисунке, при постоянной амплитуде вынуждающей силы существует диапазон вынуждающих частот, в котором возможны три различных значения амплитуды отклика. Можно показать, что штриховая линия на рис. 1.7 неустойчива, и при росте и уменьшении частоты происходит гистерезис. Это явление называется перебросом, и оно наблюдается в экспериментах со многими механическими и электрическими системами.

Существуют и другие периодические решения, такие, как субгармонические и супергармонические колебания. Если вынуждающая сила имеет вид , то субгармонические колебания могут иметь вид плюс более высокие гармоники ( - целое число). Как мы увидим ниже, субгармоники играют важную роль в предхаотических колебаниях.

Теория нелинейного резонанса зиждется на предположении, что периодическое воздействие вызывает периодический отклик. Однако именно этот постулат оспаривает новая теория хаотических колебаний.

Самовозбуждающиеся колебания - другой важный класс нелинейных явлений. Это колебательные движения, которые происходят в системах без периодических внешних воздействий или периодических сил. На рис. 1.8 показаны несколько примеров.

Рис. 1.8. Примеры самовозбуждакяцихся колебаний: а - сухое трение между массой и движущимся ремием; б - аэроупругие силы, действующие на тонкое крыло; в - отрицательное сопротивление в цепи с активным элементом.

В первом примере к колебаниям приводит трение, создаваемое относительным движением массы и движущегося ремня. Второй пример иллюстрирует целый класс аэроупругих колебаний, при которых стационарные колебания вызывает стационарный поток жидкости за твердым телом на упругой подвеске. В классическом примере из области электричества, показанном на рис. 1.9 и исследованном Ван дер Полем, в цепь включена электронная лампа.

Во всех этих примерах в системе присутствуют стационарный источник энергии и источник диссипации, или нелинейный демпфирующий механизм. В случае осциллятора Ван дер Поля источником энергии является постоянное напряжение.

Рис. 1.9. Схема цепи с вакуумной лампой, в которой происходят колебания на предельном цикле того же типа, который исследовал Ван дер Поль.

В математическую модель этой цепи источник энергии входит в виде отрицательного сопротивления:

Энергия может поступать в систему при малых амплитудах, но при увеличении амплитуды ее рост ограничивается нелинейным затуханием.

В случае маятника Фруда (см., например, ), подвод энергии осуществляется стационарным вращением оси. При малых колебаниях нелинейное трение играет роль отрицательного затухания; между тем при сильных колебаниях амплитуда колебаний ограничивается нелинейным членом

Колебательные движения таких систем часто называются предельными циклами. На рис. 1.10 показаны траектории осциллятора Ван дер Поля на фазовой плоскости. Малые колебания раскручиваются по спирали, приближаясь к замкнутой асимптотической траектории, а движения большой амплитуды стягиваются по спирали к тому же предельному циклу (см. рис. 1.10 и 1.11, где ).

При изучении подобных проблем часто возникают два вопроса. Какова амплитуда и частота колебаний на предельном цикле? При каких значениях параметров существуют устойчивые предельные циклы?

Рис. 1.10. Решение с предельным циклом для осциллятора Ван дер Поля, изображенное на фазовой плоскости.

Рис. 1.11. Релаксационные колебания осциллятора Ван дер Поля.

В случае уравнения Ван дер Поля удобно нормировать пространственную переменную на , а время - на так что уравнение принимает вид

где . При малых предельный цикл представляет собой окружность радиуса 2 на фазовой плоскости, т. е.

где через обозначены гармоники третьего и более высоких порядков. При больших движение приобретает вид релаксационных колебаний, показанных на рис. 1.11, с безразмерным периодом около 1.61 при

Более сложна задача с периодической силой в системе Ван дер Поля:

Поскольку эта система нелинейна, неприменим принцип суперпозиции свободных и вынужденных колебаний. Вместо этого возникающее периодическое движение захватывается на вынуждающей частоте, когда последняя близка к частоте предельного цикла. При слабом внешнем воздействии имеются три периодических решения, но лишь одно из них устойчиво (рис. 1.12). При больших значениях амплитуды силы существует только одно решение. В любом случае с увеличением расстройки - при фиксированном захваченное периодическое решение оказывается неустойчивым и становятся возможными другие типы движения.

Рис. 1.12. Амплитудные кривые для вынужденного движения осциллятора Ван дер Поля (1.2.9).

При больших отличиях вынуждающей и собственной частот в системе Ван дер Поля появляется новое явление - комбинационные колебания, иногда называемые почти периодическими или квазипериодическими решениями. Комбинационные колебания имеют вид

Когда частоты и несоизмеримы, т. е. - иррациональное число, решение называется квазипериодическим. Для уравнения Ван дер Поля , где - частота предельного цикла свободных колебаний (см., например, ).

Колебания в физич. системах, описываемые нелинейными системами обыкновенных дифференциальных уравнений где содержит члены не ниже 2-й степени по компонентам вектора - вектор-функция времени - малый параметр (либо и). Возможные обобщения связаны с рассмотрением разрывных систем, воздействий с разрывными характеристиками (напр., типа гистерезиса), запаздывания и случайных воздействий, интегро-дифференциальных и дифференциально-операторных уравнений, колебательных систем с распределенными параметрами, описываемыми дифференциальными уравнениями с частными производными, а также с использованием методов оптимального управления нелинейными колебательными системами. Основные общие задачи Н. к.: отыскание положений равновесия, стационарных режимов, в частности периодич. движений, автоколебаний и исследование их устойчивости, проблемы синхронизации и стабилизации Н. к. Все физич. системы, строго говоря, являются нелинейными. Одна из наиболее характерных особенно--стей Н. к.- это нарушение в них принципа суперпозиции колебаний: результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия другого воздействия. Квазилинейные системы - системы (1) при. Основным методом исследования является малого параметра метод. Прежде всего это метод Пуанкаре - Линдштедта определения переодич. решений квазилинейных систем, аналитических по параметру при его достаточно малых значениях, либо в виде рядов по степеням (см. гл. IX), либо в виде рядов по степеням и - добавок к начальным значениям компонент вектора (см. гл. III). О дальнейшем развитии этого метода см., напр., в - . Другим из методов малого параметра является метод осреднения. Вместе с тем в исследование квазилинейных систем проникали и новые методы: асимптотич. методы (см. , ), метод К-функций (см. ), базирующийся на фундаментальных результатах А. М. Ляпунова - Н. Г. Четаева, и др. Существенно нелинейные системы, в к-рых отсутствует заранее предписываемый малый параметр. Для систем Ляпунова где причем среди собственных чисел -матрицы нет кратных корню - аналитич. вектор-функция х, разложение к-рой начинается с членов не ниже 2-го порядка, и имеет место аналитический первый интеграл специального вида, А. М. Ляпунов (см. § 42) предложил метод отыскания периодич. решений в виде ряда по степеням произвольной постоянной с(за к-рую может быть принято начальное значение одной из двух крнтич. переменных либо). Для систем, близких к системам Ляпунова, где того же вида, что и в (2), - аналитич. вектор-функция и малого параметра, непрерывная и -периодическая по t, также предложен метод определения периодич. решений (см. гл. VIII). Системы типа Ляпунова (2), в к-рых матрица имеет lнулевых собственных значений с простыми элементарными делителями, два - чисто мнимых собственных значения и не имеет собственных значений, кратных - такая же, как и в (2), могут быть сведены к системам Ляпунова (см. IV.2). Исследовались также Н. к. в системах Ляпунова и в т. н. системах Ляпунова с демпфированием, а также решалась общая задача о перекачке энергии в них (см. гл. I, III, IV). Пусть существенно нелинейная автономная система приведена к жорданову виду ее линейной части где вектор по предположению имеет хотя бы одну ненулевую компоненту; , равны нулю или единице соответственно при отсутствии пли наличии непростых элементарных делителей матрицы линейной части,- коэффициенты; множество значений вектора с целочисленными компонентамп таково: Тогда существует нормализующее преобразование: приводящее (3) к нормальной форме дифференциальных уравнений
и такое, что, если. Таким образом, нормальная форма (5) содержит лишь резонансные члены, т. е. коэффициенты могут быть отличны от нуля лишь для тех, для к-рых выполнено резонансное уравнение играющее существенную роль в теории колебаний. Сходимость и расходимость нормализующего преобразования (4) исследована (см. ч. I, гл. II, III); дано вычисление коэффициентов (посредством их симметризации) (см. § 5.3). В ряде задач о Н. к. существенно нелинейных автономных систем оказался эффективным метод нормальных форм (см. , гл. VI-VIII). Из других методов исследования существенно нелинейных систем применяются метод точечных отображений (см. , ), стробосконич. метод и функционально-аналитич. методы . Качественные методы Н. к. Исходными здесь являются исследования вида интегральных кривых нелинейных обыкновенных дифференциальных уравнений, проведенные А. Пуанкаре (Н. Poincare, см. ). Приложения для задач Н. к., описываемых автономными системами 2-го порядка см. в , . Изучены вопросы существования периодич. решений и их устойчивости в большом для многомерных систем; рассмотрены почти периодические Н. к. Приложения теории обыкновенных дифференциальных уравнений с малым параметром при нек-рых производных к задачам релаксационных Н. к. см. в . Важные аспекты Н. к. и лит. см. в статьях Возмущений теория, Колебаний теория. Лит.: Пуанкаре А., Избр. труды, пер. с франц., т. 1, М., 1971; Андронов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Булгаков Б. В., Колебания, М., 1954; Малкин И. Г., Некоторые задачи теории нелинейных колебаний, М., 1956: Боголюбов Н. Н., Избр. труды, т. 1, К., 1969; [б] Боголюбов Н. Н., Митропольский Ю. А., Асимптотические методы в теории нелинейных колебаний, 4 изд., М-, 1974; Каменков Г. В., Избр. труды, т. 1-2, М., 1971-72; Ляпунов А. М., Собр. соч., т. 2, М.- Л., 195В, с. 7-263; Старжинский В. М., Прикладные методы нелинейных колебаний, М., 1977; Брюно А. Д., "Тр. Моск. матем. об-ва", 1971, т. 25, с. 119-262; 1972, т. 26, с. 199-239; Неймарк Ю. И., Метод точечных отображений в теории нелинейных колебаний, М., 1972; Мinorsky N., Introduction to non-linear mechanics, Ann Arbor, 1947; Красносельский М. А., Бурд В. Ш., Колесов Ю. С, Нелинейные почти периодические колебания, М., 1970; Пуанкаре А., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М. -Л., 1947; Бутенин Н. В., Неймарк Ю. И., Фуфаев Н. А., Введение в теорию нелинейных колебаний, М., 1976; Плисе В. А., Нелокальные проблемы теории колебаний, М. -Л., 1964; Мищенко Е. Ф., Розов Н. X., Дифференциальные уравнения с малым параметром и релаксационные колебания, М., 1975. В. М. Старжинский.


Смотреть значение Нелинейные Колебания в других словарях

Доход Средний Плюс Колебания — MEAN-VARIANCE EFFICIENCYМодель формирования оптимального портфеля ценных бумаг инвесторов, основанная на выводе Гарри Марковица (H. Markowitz) о том, что
лицо, вкладывающее
........
Экономический словарь

Капитальный Убыток, Потери Капитала Вследствие Колебания Нормы Прибыли; Потери Капитала Вследствие С — Сумма, на которую прибыль от продажи основных фондов (capital assets) меньше, чем затраты на их приобретение. До принятия Закона о налоговой реформе 1986 г. (Tax Reform Act of 1986) 2 долл.........
Экономический словарь

Колебания — MOVEРост или
снижение цен на определенный вид акций или цен на рынке в целом в результате возникновения благоприятных или неблагоприятных условий, а также в результате........
Экономический словарь

Колебания Конъюнктуры Рынка — изменения экономических параметров во времени, связанные с объективными реалиями рыночной экономики, в том числе и сезонными изменениями.
Экономический словарь

Колебания Курса
Экономический словарь

Колебания Курса (валюты, Ценных Бумаг) — изменение биржевых цен на валюту, ценные
бумаги под воздействием меняющихся
спроса,
предложения и иных факторов.
Экономический словарь

Колебания Курса Максимальное — англ. maximum price fluctuation максимальная величина колебания курса контракта в ту или иную сторону в течение биржевой сессии, определяемая правилами биржи.
Экономический словарь

Колебания Рыночной Конъюнктуры — MARKET SWINGSСм. СВИНГ; ЦИКЛ ДЕЛОВОЙ АКТИВНОСТИ; ЦИКЛ СПЕКУЛЯТИВНЫЙ
Экономический словарь

Колебания Сезонные — SEASONAL VARIATIONБолее или менее регулярные
колебания деловой активности, вызванные сезонными факторами. Напр.,
объем списания денег со счетов в банках в декабре обычно........
Экономический словарь

Принцип Колебания Курсов — FLUCTUATING PRINCIPLEПринцип выбора ценных бумаг (облигаций или акций) исходя из амплитуды колебаний их рыночных курсов в течение полного экон. цикла. Диапазон таких колебаний........
Экономический словарь

Сезонные Колебания — повышение или
понижение уровня экономической активности, масштабов экономической деятельности вследствие смены сезонов.
Экономический словарь

Сезонные Колебания Цен — цены, изменяющиеся в зависимости от времени года (
цены на сельскохозяйственную продукцию), сезона (цены на одежду и обувь).
Экономический словарь

Торговые Колебания — Доли, до которых округляются цены в сделках с ценными бумагами.
Экономический словарь

Флуктуации; Колебания; Неустойчивость; Изменение — (1) Изменение цен или процентных ставок в направлении роста или спада. Термин "флуктуации" может относиться как к незначительному, так и к сильному изменению цены акций,........
Экономический словарь

Maximum Fluctation (пределы Колебания/изменения Цены) — Максимальное ежедневное колебание цены, допускаемое на некоторых рынках. См.: limit (лимит/предел).
Экономический словарь

Realignment (механизм Совместного Колебания Валютных Курсов/пересмотр Валютных Курсов) — Процесс девальвации одной или нескольких валют, входящих в Европейскую валютную систему (European Monetary System). Обменный курс каждой из европейских валют определяется курсовым........
Экономический словарь

Колебания Курса — - изменение биржевых цен на валюту, ценные бумаги под воздействием изменения спроса, предложения и иных факторов.
Юридический словарь

Сезонные Колебания — - повышение или понижение уровня экономической активности, масштабов экономической деятельности вследствие смены годовых сезонов.
Юридический словарь

Гармонические Колебания — , периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда........
Научно-технический энциклопедический словарь

Вынужденные Колебания — возникают в системе под действием периодическоговнешнего воздействия (напр., вынужденные колебания маятника под действиемпериодической силы, вынужденные колебания........

Гармонические Колебания — характеризуются изменением колеблющейся величиныx (напр., отклонения маятника от положения равновесия, напряжения в цепипеременного тока и т. д.) во времени t по закону:........
Большой энциклопедический словарь

Затухающие Колебания — собственные колебания, амплитуда А которых убываетсо временем t по закону экспоненты А(t) = Аоexp (- ?t) (? - показательзатухания из-за диссипации энергии благодаря силам вязкого........
Большой энциклопедический словарь

Колебания — движения (изменения состояния), обладающие той или инойстепенью повторяемости. Наиболее распространены:1) механические колебания:колебания маятника, моста, корабля........
Большой энциклопедический словарь

Колебания Кристаллической Решетки — колебания атомов или ионов,составляющих кристалл, около положений равновесия (узлов кристаллическойрешетки). Амплитуда тепловых колебаний кристаллической решетки........
Большой энциклопедический словарь

Сверхвысокочастотные Колебания — (СВЧ) электромагнитные колебания частотой от 3108 до 31011 гц; используются в физиотерапии для локального поверхностного нагрева тканей организма.
Большой медицинский словарь

Ультразвуковые Колебания — см. Ультразвук.
Большой медицинский словарь

Нелинейные Системы — колебательные системы, в которых протекают процессы,описываемые нелинейными дифференциальными уравнениями. Свойства ихарактеристики нелинейных систем зависят от их состояния.
Большой энциклопедический словарь

Нормальные Колебания — собственные (свободные) гармонические колебаниялинейных систем с постоянными параметрами, в которых отсутствуют какпотери энергии, так и приток ее извне. Каждое нормальное........
Большой энциклопедический словарь

Плазменные Колебания — различные типы колебаний, возбуждающиеся ираспространяющиеся в плазме. К ним относятся медленные колебания тяжелыхионов относительно быстро колеблющихся электронов........
Большой энциклопедический словарь

Разрывные Колебания — релаксационные колебания, при которых колебательныйпроцесс представляет собой последовательность медленных (по сравнению спериодом колебаний) изменений состояния........
Большой энциклопедический словарь

НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ

Колебания в физич. системах, описываемые нелинейными системами обыкновенных дифференциальных уравнений

где содержит члены не ниже 2-й степени по компонентам вектора - вектор-функция времени - малый параметр (либо и ). Возможные обобщения связаны с рассмотрением разрывных систем, воздействий с разрывными характеристиками (напр., типа гистерезиса), запаздывания и случайных воздействий, интегро-дифференциальных и дифференциально-операторных уравнений, колебательных систем с распределенными параметрами, описываемыми дифференциальными уравнениями с частными производными, а также с использованием методов оптимального управления нелинейными колебательными системами. Основные общие задачи Н. к.: отыскание положений равновесия, стационарных режимов, в частности периодич. движений, автоколебаний и исследование их устойчивости, проблемы синхронизации и стабилизации Н. к.

Все физич. системы, строго говоря, являются нелинейными. Одна из наиболее характерных особенно--стей Н. к.- это нарушение в них принципа суперпозиции колебаний: результат каждого из воздействий в присутствии другого оказывается иным, чем в случае отсутствия другого воздействия.

Квазилинейные системы - системы (1) при . Основным методом исследования является малого параметра метод. Прежде всего это метод Пуанкаре - Линдштедта определения переодич. решений квазилинейных систем, аналитических по параметру при его достаточно малых значениях, либо в виде рядов по степеням (см. гл. IX), либо в виде рядов по степеням и - добавок к начальным значениям компонент вектора (см. гл. III). О дальнейшем развитии этого метода см., напр., в - .

Другим из методов малого параметра является метод осреднения. Вместе с тем в исследование квазилинейных систем проникали и новые методы: асимптотич. методы (см. , ), метод К-функций (см. ), базирующийся на фундаментальных результатах А. М. Ляпунова - Н. Г. Четаева, и др.

Существенно нелинейные системы, в к-рых отсутствует заранее предписываемый малый параметр . Для систем Ляпунова

причем среди собственных чисел -матрицы нет кратных корню - аналитич. вектор-функция х, разложение к-рой начинается с членов не ниже 2-го порядка, и имеет место аналитический специального вида, А. М. Ляпунов (см. § 42) предложил метод отыскания периодич. решений в виде ряда по степеням произвольной постоянной с(за к-рую может быть принято начальное значение одной из двух крнтич. переменных либо ).

Для систем, близких к системам Ляпунова,

где того же вида, что и в (2), - аналитич. вектор-функция и малого параметра , непрерывная и -периодическая по t, также предложен метод определения периодич. решений (см. гл. VIII). Системы типа Ляпунова (2), в к-рых имеет lнулевых собственных значений с простыми элементарными делителями, два - чисто мнимых собственных значения и не имеет собственных значений, кратных - такая же, как и в (2), могут быть сведены к системам Ляпунова (см. IV.2). Исследовались также Н. к. в системах Ляпунова и в т. н. системах Ляпунова с демпфированием, а также решалась общая задача о перекачке энергии в них (см. гл. I, III, IV).

Пусть существенно нелинейная приведена к жорданову виду ее линейной части

где вектор по предположению имеет хотя бы одну ненулевую компоненту; , равны нулю или единице соответственно при отсутствии пли наличии непростых элементарных делителей матрицы линейной части,- коэффициенты; значений вектора с целочисленными компонентамп таково:

Тогда существует нормализующее преобразование:

приводящее (3) к нормальной форме дифференциальных уравнений

и такое, что , если . Таким образом, (5) содержит лишь , т. е. коэффициенты могут быть отличны от нуля лишь для тех , для к-рых выполнено резонансное уравнение

играющее существенную роль в теории колебаний. Сходимость и расходимость нормализующего преобразования (4) исследована (см. ч. I, гл. II, III); дано вычисление коэффициентов (посредством их симметризации) (см. § 5.3). В ряде задач о Н. к. существенно нелинейных автономных систем оказался эффективным метод нормальных форм (см. , гл. VI-VIII).

Из других методов исследования существенно нелинейных систем применяются метод точечных отображений (см. , ), стробосконич. метод и функционально-аналитич. методы .

Качественные методы Н. к. Исходными здесь являются исследования вида интегральных кривых нелинейных обыкновенных дифференциальных уравнений, проведенные А. Пуанкаре (Н. Poincare, см. ). Приложения для задач Н. к., описываемых автономными системами 2-го порядка см. в , . Изучены вопросы существования периодич. решений и их устойчивости в большом для многомерных систем; рассмотрены почти периодические Н. к. Приложения теории обыкновенных дифференциальных уравнений с малым параметром при нек-рых производных к задачам релаксационных Н. к. см. в .

Важные аспекты Н. к. и лит. см. в статьях Возмущений , Колебаний теория.

Лит. : Пуанкаре А., Избр. труды, пер. с франц., т. 1, М., 1971; Андронов А. А., Витт А. А., Xайкин С. Э., Теория колебаний, 2 изд., М., 1959; Булгаков Б. В., Колебания, М., 1954; Малкин И. Г., Некоторые задачи теории нелинейных колебаний, М., 1956: Боголюбов Н. Н., Избр. труды, т. 1, К., 1969; [б] Боголюбов Н. Н., Митропольский Ю. А., Асимптотические методы в теории нелинейных колебаний, 4 изд., М-, 1974; Каменков Г. В., Избр. труды, т. 1-2, М., 1971-72; Ляпунов А. М., Собр. соч., т. 2, М.- Л., 195В, с. 7-263; Старжинский В. М., Прикладные методы нелинейных колебаний, М., 1977; Брюно А. Д., "Тр. Моск. матем. об-ва", 1971, т. 25, с. 119-262; 1972, т. 26, с. 199-239; Неймарк Ю. И., Метод точечных отображений в теории нелинейных колебаний, М., 1972; Мinorsky N., Introduction to non-linear mechanics, Ann Arbor, 1947; Красносельский М. А., Бурд В. Ш., Колесов Ю. С, Нелинейные почти периодические колебания, М., 1970; Пуанкаре А., О кривых, определяемых дифференциальными уравнениями, пер. с франц., М. -Л., 1947; Бутенин Н. В., Неймарк Ю. И., Фуфаев Н. А., Введение в теорию нелинейных колебаний, М., 1976; Плисе В. А., Нелокальные проблемы теории колебаний, М. -Л., 1964; Мищенко Е. Ф., Розов Н. X., Дифференциальные уравнения с малым параметром и релаксационные колебания, М., 1975.

В. М. Старжинский.

Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ" в других словарях:

    нелинейные колебания - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN nonlinear oscillations … Справочник технического переводчика

    нелинейные колебания - netiesiniai virpesiai statusas T sritis fizika atitikmenys: angl. non linear oscillations; non linear vibrations vok. nichtlineare Schwingungen, f rus. нелинейные колебания, n pranc. oscillations non linéaires, f … Fizikos terminų žodynas

    Термин, который иногда употребляют, подразумевая колебания в нелинейных системах (См. Нелинейные системы) … Большая советская энциклопедия

    Нелинейные колебания Нелінійні коливання Специализация … Википедия

    Процессы в колебат. и волновых системах, не удовлетворяющие суперпозиции принципу. Нелинейные колебания или волны в общем случае взаимодействуют между собой, а их характеристики (частота, форма колебаний, скорость распространения, вид профиля… … Физическая энциклопедия

    Колебательные системы, св ва к рых зависят от происходящих в них процессов. Колебания таких систем описываются нелинейными ур ниями. Нелинейными явл.: механич. системы, где модули упругости тел зависят от деформаций последних или коэфф. трения… … Физическая энциклопедия

Теория нелинейных колебаний начала активно применяться и развиваться в течение последних 50 лет. Основополагающее значение в указанной гипотезе, в частности в концепции автоматических вибраций, принадлежит российскому ученому. М. Ляпунову и его сторонникам, работы которых смогли доказать необходимость использования нелинейных методов в решении сложных задач.

Замечание 1

Теория нелинейных колебаний (или нелинейного механического перемещения частиц среды) направлена на исследование нестабильных колебательных движений, описываемых в физике в виде дифференциальных уравнений.

Данная сфера в механике предоставляет более точное представление о характеристиках вибрационных движений автоматических систем. В итоге линейные формулы получаются путем упрощения нелинейных. Поэтому рассмотрение подобных колебаний дает возможность сделать только определенные заключения о свойствах кратковременных движений, которые могут быть лишь приближенными. Несмотря на это, теория нелинейных вибраций включает важные сведения о систематических решениях, появляющихся за рамками стабильности стационарного состояния.  

Способы проявления нелинейных эффектов

Нелинейные процессы могут формироваться посредством разнообразных методов. Классический и наглядный пример - это нелинейная спираль, в которой возобновляющая сила непосредственно зависит от начального растяжения. В случае параллельной нелинейности (одинаковый итог при растяжении и сжатии) формула движения частиц любого пространства принимает вид:

$\chi + 2 \gamma \chi + \alpha \chi + \beta \chi^3 = f (t)$

Если на систему периодически воздействует внешняя сила, то в классической гипотезе полагают, что и конечный отклик станет цикличным. Резонанс нелинейного явления при малой частоте отклика заключается в его соответствии с плотностью элементов концепции. При постоянном перемещении вынуждающей силы возникает амплитуда соответствующих частот, в котором вероятны разные значения сдвига частиц.

Существуют и другие комплексные решения, такие, как супергармонические и субгармонические вибрации. Если обязывающая сила имеет целостный вид, то другие колебания становятся более высокими. Гипотеза нелинейного резонанса основывается на предположении, что систематическое влияние предполагает создание периодического отклика.

Самоформирующиеся колебания представляют собой иной важный класс нелинейных процессов. Это вибрационные движения, которые формируются в системах без цикличных внешних периодических сил или воздействий.

Парадигма гипотезы нелинейных колебаний

Теория нелинейных движений стала заменой закона электрических вибраций Ван дер Поля. Последняя была генетически взаимосвязана с созданием принципов гипотезы радиотехнического прибора – лампового распределителя. В таком генераторе, функционирующем с определенным «трением» (т.е. будучи неконсервативной концепцией), постепенно появляются незатухающие колебательные перемещения. Это значит, что система включает источник внутренней энергии (или в систему систематически поступает питание извне). Однако в данном аспекте речь не идет о принужденных вибрациях. Ламповое устройство самостоятельно генерирует цикличные самовозбуждающиеся колебания.

Такие процессы возникают и функционируют за счет универсальной конструкции генератора, включающего, кроме колебательного усилитель и контура, связанных с ударной линией обратной связи.

Оставляя нерешенным вопрос о парадигме указанной гипотезы Ван дер Поля, возможно примерно описать концепцию, которая наблюдалась в трудах Мандельштама, Андронова и их последователей в конце 20-х гг.

Замечание 2

В качестве первого и основного элемента в работах ученых выступают «символические обобщения» – математические уравнения, которые определяют и описывают универсальные научные закономерности. В современной физике – это в основном дифференциальные формулы.

Ван дер Поль, в первую очередь, следовал уравнениям, описывающим принцип работы простого лампового распределителя:

$\frac {d^2x}{dt^2} - \mu (1 – 2x^2) \frac {dx}{dt} = x = 0$

Здесь $x$ – общий параметр (в случае генератора – сила и энергия тока), $t$ – определённый период времени, а нелинейный элемент $\frac{x}{dt}$ демонстрирует работу электронной лампы.

Значимую роль в истории теории нелинейных вибраций сыграл так называемый способ припасовывания (позднее названный законом структурно-линейной аппроксимации).

Собственно, в начале 1927 года Мандельштам смог более тщательно проанализировать стабильность колебательных движений, получаемых по указанному принципу. Метод припасовывания и на сегодняшний день широко применяется в гипотезе нелинейных колебаний.

Идеология теории нелинейных процессов

Идеология рассматриваемой гипотезы, прежде всего, характеризует особенности автоколебаний.

Понятия этих явлений были введены Л.В. Андроновым в научных статьях 1928–1929 гг. Фактически с механическими вибрациями имел дело и Ван дер Поль, описывая колебательные движения в ламповом генераторе, но он не так и не смог представить специального термина для них.

В работах Андронова «символическим обобщением» в итоге стало дифференциальное уравнение, по отношению к которому формула Ван дер Поля представляет собой только частный случай. Запись подобной эквивалентности выглядит следующим образом:

$\frac {d^2x}{dt^2} + \frac { 2dx}{dt + \omega^2 x} = f (\frac {x,dx}{dt})$

Идеология появляется вместе с парадигмой, но она распространяется значительно дальше. Идеологические процессы – это выражения и слова, значения которых определяются посредством аналогий, примеров и иллюстраций. Одним из главных признаков использования термина в идеологии является некое размывание его сути. Понятие условно выходит за границы собственной сферы применения.