Термоядерный взрыв. Водородная бомба

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

В мире существует немалое количество различных политических клубов. Большая, теперь уже, семерка, Большая двадцатка, БРИКС, ШОС, НАТО, Евросоюз, в какой-то степени. Однако ни один из этих клубов не может похвастаться уникальной функцией – способностью уничтожить мир таким, каким мы его знаем. Подобными возможностями обладает «ядерный клуб».

На сегодняшний день существует 9 стран, обладающих ядерным оружием:

  • Россия;
  • Великобритания;
  • Франция;
  • Индия
  • Пакистан;
  • Израиль;
  • КНДР.

Страны выстроены по мере появления у них в арсенал ядерного оружия. Если бы список был выстроен по количеству боеголовок, то Россия оказалась бы на первом месте с ее 8000 единицами, 1600 из которых можно запускать хоть сейчас. Штаты отстают всего на 700 единиц, но «под рукой» у них на 320 зарядов больше.«Ядерный клуб» — понятие сугубо условное, никакого клуба на самом деле нет. Между странами есть ряд соглашений по нераспространению и сокращению запасов ядерного оружия.

Первые испытания атомной бомбы, как известно, произвела США еще в 1945. Это оружие было испытано в «полевых» условиях Второй Мировой на жителях японских городов Хиросима и Нагасаки. Они действуют по принципу деления. Во время взрыва запускается цепная реакция, которая провоцирует деления ядер на два, с сопутствующим высвобождением энергии. Для этой реакции в основном используют уран и плутоний. С этими элементами и связаны наши представления о том, из чего делаются ядерные бомбы. Так как в природе уран встречается лишь в виде смеси трех изотопов, из которых только один способен поддерживать подобную реакцию, необходимо производить обогащение урана. Альтернативой является плутоний-239, который не встречается в природе, и его нужно производить из урана.

Если в урановой бомбе идет реакция деления, то в водородной реакция слияния - в этом суть того, чем отличается водородная бомба от атомной. Все мы знаем, что солнце дает нам свет, тепло, и можно сказать жизнь. Те же самые процессы, что происходят на солнце, могут с легкостью уничтожать города и страны. Взрыв водородной бомбы рожден реакцией синтеза легких ядер, так называемого термоядерного синтеза. Это «чудо» возможно благодаря изотопам водорода – дейтерию и тритию. Собственно поэтому бомба и называется водородной. Также можно увидеть название «термоядерная бомба», по реакции, которая лежит в основе этого оружия.

После того, как мир увидел разрушительную силу ядерного оружия, в августе 1945 года, СССР начало гонку, которая продолжалась до момента его распада. США первыми создали, испытали и применили ядерное оружие, первыми произвели подрыв водородной бомбы, но на счет СССР можно записать первое изготовление компактной водородной бомбы, которую можно доставить противнику на обычном Ту-16. Первая бомба США была размером с трехэтажный дом, от водородной бомбы такого размер мало толку. Советы получили такое оружие уже в 1952, в то время как первая «адекватная» бомба Штатов была принята на вооружение лишь в 1954. Если оглянуться назад и проанализировать взрывы в Нагасаки и Хиросиме, то можно прийти к выводу, что они не были такими уж мощными. Две бомбы в сумме разрушили оба города и убили по разным данным до 220 000 человек. Ковровые бомбардировки Токио в день могли уносить жизни 150-200 000 человек и без всякого ядерного оружия. Это связано с малой мощностью первых бомб — всего несколько десятков килотонн в тротиловом эквиваленте. Водородные же бомбы испытывали с прицелом на преодоление 1 мегатонны и более.

Первая Советская бомба была испытана с заявкой на 3 Мт, но в итоге испытывали 1.6 Мт.

Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. «Царь» поверг мир в легкий шок, в прямом смысле. Ударная волна обошла планету три раза. На полигоне (Новая Земля) не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км. Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности (Штаты располагали на тот момент бомбами вчетверо меньше по силе) стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой.

Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии. Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего. Что же до термоядерной реакции в настоящее время, то для ее запуска по-прежнему нужно зажигать миниатюрное солнце здесь на Земле — обычно в бомбах используют урановый или плутониевый заряд для старта синтеза.

Помимо описанных выше последствий от использования бомбы в десятки мегатонн, водородная бомба, как и любое ядерное оружие, имеет ряд последствий от применения. Некоторые люди склонны считать, что водородная бомба — «более чистое оружие», чем обычная бомба. Возможно, это связано с названием. Люди слышат слово «водо» и думают, что это как-то связано с водой и водородом, а следовательно последствия не такие плачевные. На самом деле это конечно не так, ведь действие водородной бомбы основано на крайне радиоактивных веществах. Теоретически возможно сделать бомбу без уранового заряда, но это нецелесообразно ввиду сложности процесса, поэтому чистую реакцию синтеза «разбавляют» ураном, для увеличения мощности. При этом количество радиоактивных осадков вырастает до 1000%. Все, что попадает в огненный шар, будет уничтожено, зона в радиусе поражения станет необитаемой для людей на десятилетия. Радиоактивные осадки могут нанести вред здоровью людей в сотнях и тысячах километров. Конкретные цифры, площадь заражения можно рассчитать, зная силу заряда.

Однако разрушение городов — не самое страшное, что может случиться «благодаря» оружию массового поражения. После ядерной войны мир не будет полностью уничтожен. На планете останутся тысячи крупных городов, миллиарды людей и лишь небольшой процент территорий потеряет свой статус «пригодная для жизни». В долгосрочной перспективе весь мир окажется под угрозой из-за так называемой «ядерной зимы». Подрыв ядерного арсенала «клуба» может спровоцировать выброс в атмосферу достаточного количества вещества (пыли, сажи, дыма), чтобы «убавить» яркость солнца. Пелена, которая может разнестись по всей планете, уничтожит урожаи на несколько лет вперед, провоцируя голод и неизбежное сокращение населения. В истории уже был «год без лета», после крупного извержения вулкана в 1816, поэтому ядерная зима выглядит более чем реально. Опять же в зависимости от того, как будет протекать война, мы можем получить следующие виды глобального изменения климата:

  • похолодание на 1 градус, пройдет незаметно;
  • ядерная осень – похолодание на 2-4 градуса, возможны неурожаи и усиление образования ураганов;
  • аналог «года без лета» — когда температура упала значительно, на несколько градусов на год;
  • малый ледниковый период – температура может упасть на 30 – 40 градусов на значительное время, будет сопровождаться депопуляцией ряда северных зон и неурожаями;
  • ледниковый период – развитие малого ледникового периода, когда отражение солнечных лучей от поверхности может достичь некой критической отметки и температура продолжит падать, отличие лишь в температуре;
  • необратимое похолодание – это совсем печальный вариант ледникового периода, который под влиянием множества факторов превратит Землю в новую планету.

Теория ядерной зимы постоянно подвергается критике, ее последствия выглядят немного раздутыми. Однако не стоит сомневаться в ее неминуемом наступлении при каком-либо глобальном конфликте с применением водородных бомб.

Холодная война давно позади, и поэтому ядерную истерию можно увидеть разве что в старых голливудских фильмах и на обложках раритетных журналов и комиксов. Несмотря на это, мы можем находиться на пороге, пусть и не большого, но серьезного ядерного конфликта. Все это благодаря любителю ракет и герою борьбы с империалистическими замашками США – Ким Чен Ыну. Водородная бомба КНДР — объект пока что гипотетический, о ее существовании говорят лишь косвенные улики. Конечно, правительство Северной Кореи постоянно сообщает о том, что им удалось изготовить новые бомбы, пока что в живую их никто не видел. Естественно Штаты и их союзники – Япония и Южная Корея, немного более обеспокоены наличием, пусть даже и гипотетическим, подобного оружия у КНДР. Реалии таковы, что на данный момент у КНДР не достаточно технологий для успешной атаки на США, о которой они каждый год заявляют на весь мир. Даже атака на соседние Японию или Юг могут быть не очень успешными, если вообще состоятся, но с каждым годом опасность возникновения нового конфликта на корейском полуострова растет.

Я понял, что бомбы ржавеют. Даже атомные. Хотя это выражение и не стоит воспринимать буквально, общий смысл происходящего именно такой. По целому ряду естественных причин сложное оружие с течением времени утрачивает свои изначальные свойства настолько, что возникают весьма серьезные сомнения в его срабатывании, если дело до того дойдет. Наглядный тому пример - нынешняя история с американской термоядерной бомбой В61, ситуация с которой сложилась вообще запутанная и, отчасти, где-то даже комичная. Изготовители ядерных боеголовок по обе стороны океана дают одинаковый гарантийный срок на свои изделия - 30 лет.

Поскольку вряд речь идет о корпоративном сговоре монополистов, очевидно, что проблема - в законах физики. Вот как это описывает автор.

Национальное управление ядерной безопасности США (NNSA) у себя на сайте разместило сообщение о начале инженерной подготовки производства модернизированной термоядерной авиабомбы В61-12, являющейся дальнейшей модификацией “изделия” В61, поступавшего в арсенал США с 1968 по конец 1990х годов и составляющего сегодня, наравне с крылатыми ракетами “Томагавк”, основу американской тактической ядерной мощи. Как отметил глава NNSA Фрэнк Клотц, это позволит продлить сроки эксплуатации системы еще как минимум на 20 лет, т.е. примерно до 2040 - 2045 года.

Стоит ли удивляться шуму, который немедленно подняли журналисты по этому поводу? А как же недавно принятый в США билль о запрете разработки новых видов ядерного оружия? А как же условия договора об СНВ-III? Правда, нашлись и те, кто попытался увязать заявление Клотца с прозвучавшим еще в 2011 году российским заявлением о начале широкомасштабных работ по модернизации своего ядерного арсенала. Правда, там речь шла не столько о создании новых боезарядов, сколько о разработке новых носителей, например межконтинентальных баллистических ракет пятого поколения “Рубеж” и “Сармат”, железнодорожном комплексе “Баргузин”, ракете морского базирования “Булава” и строительстве восьми подводных крейсеров “Борей”. Но кого сейчас такие тонкости волнуют? Тем более, что тактическое ядерное оружие под условия СНВ-III все равно не подпадает. Да и, по большому счету, все перечисленное к первопричине истории имеет весьма опосредованное отношение. Исходный мотив заключается, как уже сказано, прежде всего, в законах физики.

История В61 началась в 1963 году с проекта ТХ-61 Лос-Аламосской национальной лаборатории в Нью-Мехико. Математическое моделирование реализации господствовавшей в то время концепции применения ядерного оружия показало, что даже после массированных ядерных ударов боеголовками баллистических ракет на поле боя останется масса важных и хорошо защищенных объектов, опираясь на которые противник (мы все хорошо понимаем, кого они имели в виду) сможет продолжить ведение большой войны. ВВС США потребовался тактический инструмент для, так сказать, “точечного поражения”, например, заглубленных бункеров управления и связи, подземных топливных хранилищ или прочих объектов, вроде известной подземной базы подводных лодок в Крыму, при помощи наземных ядерных взрывов малой мощности. Ну, как малой, “от 0,3 килотонн”. И до 170 килотонн, но об этом ниже.

В серию изделие пошло в 1968 году и получило официальное наименование В61. За все время производства, во всех модификациях, этих бомб американцы наштамповали 3155 штук. И вот с этого момента начинается сама нынешняя история, так как сегодня из всего трехтысячного арсенала “в живых” осталось: 150 “стратегических” и около 400 “тактических” бомб, а также еще примерно 200 “тактических” изделий находятся на хранении в резерве. На этом - все. Куда делись остальные? Вполне уместно пошутить - полностью заржавели, - и это будет не так чтобы большая шутка.

Бомба В61 является термоядерной, или как их еще не совсем правильно, но часто называют - водородной. Ее разрушительное действие основано на использовании реакции ядерного синтеза легких элементов в более тяжелые (например, получения одного атома гелия из двух атомов дейтерия), при которой выделяется огромное количество энергии. Теоретически запустить такую реакцию можно и в среде жидкого дейтерия, но это сложно с точки зрения конструкции. Хотя первые испытательные взрывы на полигоне производились именно так. Но получить изделие, которое бы можно было доставить к цели самолетом, удалось только благодаря соединению тяжелого изотопа водорода (дейтерия) и изотопа лития с массовым числом 6 известного сегодня как дейтерид лития -6. Помимо “ядерных” свойств, его главное преимущество заключается в том, что он твердый и позволяет хранить в себе дейтерий при плюсовых температурах внешней среды. Собственно, именно с появлением доступного 6Li и появилась возможность реализовать на практике в виде оружия.

Американская термоядерная бомба основана на принципе Теллера-Улама. С известной долей условности ее можно представить в виде прочного корпуса, внутри которого находится инициирующий триггер и контейнер с термоядерным горючим. Триггером, или по-нашему детонатором, служит небольшой плутониевый заряд, задача которого сводится к созданию начальных условий для запуска термоядерной реакции - высокой температуры и давления. “Термоядерный контейнер” содержит в себе дейтерид лития -6 и расположенный строго по продольной оси плутониевый стержень, играющий роль запала термоядерной реакции. Сам контейнер (может изготавливаться как из урана-238, так и из свинца) покрыт соединениями бора для защиты содержимого от преждевременного разогрева потоком нейтронов от триггера. Точность взаимного расположения триггера и контейнера чрезвычайно важна, по этому, после сборки изделия, внутреннее пространство заливается специальным пластиком, проводящим излучение, но при этом обеспечивающим надежную фиксацию во время хранения и до этапа подрыва.

При срабатывании триггера 80% его энергии выделяется в виде импульса так называемого мягкого рентгеновского излучения, который поглощается пластиком и оболочкой “термоядерного” контейнера. По ходу процесса и то и другое превращается в высокотемпературную плазму, находящуюся под большим давлением, и обжимающую содержимое контейнера до объема, составляющего менее чем тысячную долю от исходного. Тем самым плутониевый стержень переходит в надкритическое состояние, становясь источником собственной ядерной реакции. Разрушение ядер плутония создает нейтронный поток, который, взаимодействуя с ядрами лития-6, высвобождает тритий. Он уже вступает во взаимодействие с дейтерием и начинается та самая реакция синтеза, выделяющая основную энергию взрыва.

A: Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
B: Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
C: В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
D: Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
E: В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

Ну а пока оно все не бабахнуло, термоядерная В61 представляет собой привычного вида “бомбообразную железяку” длиной 3,58 метра и диаметром 33 см, состоящую из нескольких частей. В носовом обтекателе - управляющая электроника. За ним отсек с зарядом, внешне выглядящим как совершенно неброский металлический цилиндр. Потом еще относительно небольшой отсек с электроникой и хвостовик с жестко закрепленными стабилизаторами, содержащий тормозной стабилизирующий парашют, для замедления скорости падения, чтобы сбросивший бомбу самолет получил время уйти из зоны воздействия взрыва.

Бомба “B-61” в разборе.

В таком виде бомба и хранилась “там, где надо”. В том числе почти 200 штук развернуто в Европе: в Бельгии, Нидерландах, Германии, Италии и Турции. Или вы думаете почему США своих граждан сегодня из Турции отзывают, даже семьи дипломатов эвакуируют, а охрана на авиабазе НАТО Инджирлик заняла периметр “по-боевому” и готовится реально стрелять в своего партнера по военному блоку при малейшей попытке пересечь периметр “американского” сектора? Причина как раз в наличии там некоторого оперативного запаса американского тактического ядерного оружия. Именно этих вот В61. Сколько их в Турции точно - установить не удалось, а вот на авиабазе Рамштайн в Германии их лежит 12 штук.

Полигонные испытания В61 первых моделей в целом дали удовлетворительный результат. С дальности в 40 - 45 километров, изделие попадало в круг радиусом около 180 метров, что при максимальной мощности взрыва в 170 килотонн гарантировало успешную компенсацию промаха по расстоянию силой самого наземного взрыва. Правда, вскоре военные обратили внимание на теоретическую возможность конструкции несколько варьировать мощность подрыва, так как максимальная требовалась далеко не всегда, а целом ряде случаев от излишнего усердия вреда оказывалось значительно больше, чем пользы. Так что “чистой” В61, как ее придумали изначально, сегодня уже не сохранилось.
Весь выпущенный запас прошел целую серию последовательных модификаций, из которых сейчас самой “древней” является В61-3 и вскоре за ней последовавшая В61-4. Последняя особенно интересна тем, что одно и то же изделие, в зависимости от настроек электроники, может создать взрыв мощностью 0,3 - 1,5 - 10 - 45 килотонн. Судя по всему, 0,3 килотонны это и есть примерное значение мощности взрыва триггера, без запуска последующей термоядерной части бомбы.

В настоящее время на вооружении США находятся 3-я и 4-я модель В61, для так называемого “низкого” бомбометания, применяющегося самолетами тактической авиации: F-16, F-18, F-22, A-10, Tornado и Eurofighter. А доработанные до шага мощности 60, 80 и 170 килотонн, модификации 7 и 11 считаются “высотными” и входят в ассортимент вооружения стратегических бомбардировщиков В-2А и В-52Н.

На том бы история и закончилась, если бы не физика. Казалось бы, сделали бомбу, положили в спецхранилище, поставили охрану и потекла себе служба рутинная. Ну да, в начале 70х, в результате авиационных ЧП с патрулировавшими в воздухе Б-52, случилось несколько неприятностей, когда сколько-то ядерных бомб оказались потеряны. У берегов Испании время от времени поиски вспыхивают по сей день. ВВС США так и не признались, сколько же точно “изделий” у них в тот раз “утонуло вместе с обломками самолета”. Вот только было 3155, а осталось что-то около тысячи, это ни на какие ЧП не списать. Куда делась разница?

Я совсем не занудства ради выше подробно расписывал устройство американского тактического “ядренбатона”. Без него сложно было бы понять суть проблемы, с которой столкнулись США, и которую пытались скрывать на протяжении как минимум последних 15 лет. Вы помните, бомба состоит из “бака с термоядерным топливом” и плутониевого триггера - зажигалки. С тритием-то там никаких проблем. Дейтерид-лития-6 - вещество твердое и по своим характеристикам достаточно стабильное. Обычная взрывчатка, из которой состоит детонационная сфера первоначального инициатора триггера, со временем свои характеристики конечно меняет, но ее замена особой проблемы не создает. А вот к плутонию есть вопросы.

Оружейный плутоний - он распадается. Постоянно и неостановимо. Проблема боеспособности “старых” плутониевых зарядов в том, что с течением времени уменьшается концентрация Плутония 239. Из-за альфа-распада (ядра Плутония-239 «теряют» альфа-частицы, представляющие из себя ядра атома Гелия), вместо него образуется примесь Урана 235. Соответственно, растёт критическая масса. Для чистого Плутония 239 - это 11кг (10см сфера), для урана - 47 кг (17см сфера). Уран -235 также распадается (это как и в случае с Плутонием-239, тоже альфа-распад), загрязняя плутониевую сферу Торием-231 и Гелием.Примесь плутония 241 (а оно всегда есть, хоть и доли процентов) с периодом полураспада в 14 лет, также распадается(в этом случае идет уже бета-распад - Плутоний-241 «теряет» электрон и нейтрино), давая Америций 241, ещё более ухудшающий критические показатели(Америций-241 распадается по альфа-варианту до Нептуния-237 и все того же Гелия).

Когда я говорил про ржавчину, я не сильно то и шутил. Плутониевые заряды “стареют”. И их, как бы, невозможно “обновить”. Да, теоретически, можно поменять конструкцию инициатора, расплавить 3 старых шарика, сплавить из них 2 новых… Увеличив массу с учётом деградации плутония. Однако “грязный” плутоний - ненадёжен. Даже увеличенный “шарик” может не выйти на сверхкритическое состояние при обжатии во время взрыва… А если вдруг по какой-то статистической прихоти в полученном шарике образуется повышенное содержание Плутония-240 (образуется из 239 захватом нейтрона) - то наоборот, может бабахнуть прямо на заводе. Критичной величиной является 7% Плутония-240, превышение которой может привести к изящно сформулированной «проблеме» - «преждевременной детонации».
Таким образом, мы приходим к выводу о том, что для обновления парка B61 Штатам нужны новые, свежие плутониевые инициаторы. Но официально - реакторы -размножители в Америке были закрыты еще в 1988 году. Существуют, конечно, еще накопленные запасы. В РФ к 2007 было накоплено 170 тонн оружейного плутония, в США - 103 тонны. Хотя эти запасы тоже “стареют”. Плюс к тому, вспоминается статья НАСА о том, что у США осталось Плутония-238 всего на пару РИТЭГов. Департамент энергетики обещает НАСА 1.5 кг Плутония-238 в год. “Новые горизонты” имеет 220Ваттный РИТЭГ, содержащий в себе 11 килограммов. “Любопытство” - несёт РИТЭГ с 4.8 кг. Причём, есть предположения, что этот плутоний уже был куплен в России…

Это и приоткрывает завесу тайны над вопросом “массового усыхания” американского тактического ядерного оружия. Подозреваю, что все В61, произведенные до начала 80х годов ХХ века они разобрали сами, так сказать, во избежание “внезапных случайностей”. А также в виду неизвестности: - а сработает ли изделие, как надо, если, не приведи Господи, дело таки дойдет до его практического применения? Но теперь начал “подходить срок” оставшейся части арсенала и судя по всему старые приемы с ним уже не проходят. Бомбы надо разбирать, но сделать новые в Америке уже не из чего. От слова - вообще. Технологии обогащения урана утрачены, наработка оружейного плутония остановлена теперь уже по обоюдной договоренности России и США, специальные реакторы остановлены. Специалистов практически не осталось. Да и денег начинать эти ядерные танцы с начала в нужном количестве, как выяснилось, у США уже тоже нет. А отказаться от тактического ядерного оружия нельзя по целому ряду политических причин. Да и вообще, в США все, от политиков до военных стратегов слишком сильно привыкли к наличию у себя тактической ядерной дубинки. Без нее им как-то неуютно, холодно, страшно и очень одиноко.

Впрочем, судя по информации открытых источников, пока ядерная начинка в В61 еще не совсем до конца «протухла». Лет 15 - 20 изделие еще срабатывать будет. Другой вопрос, что про установку на максимальную мощность можно забыть. Значит что? Значит надо придумать, как ту же бомбу можно класть точнее! Расчеты на матмоделях показали, что при сокращении радиуса круга, в который изделие будет гарантированно попадать, до 30 метров, и обеспечения не наземного, а подземного подрыва боевой части на глубине хотя бы от 3 до 12 метров, разрушительная сила удара, за счет процессов, протекающих в плотное среде грунтов, получается той же, а мощность взрыва можно уменьшить до 15 раз. Грубо говоря, тот же результат достигается 17ю килотоннами, вместо 170. Как это сделать? Да элементарно, Ватсон!
ВВС уже скоро как 20 лет применяют технологию Joint Direct Attack Munition (JDAM). Берется обычная “тупая” (от английского dumb) бомба.

На нее навешивается комплект наведения, включающий использование GPS, заменяется хвостовая часть с пассивной на активно подруливающую по командам бортового компьютера, и вот вам новая, уже”умная”(smart) бомба, способная поражать цель точно. Кроме того, замена материалов некоторых элементов корпуса и головного обтекателя позволяет оптимизировать траекторию встречи изделия с преградой так, чтобы за счет собственной кинетической энергии оно могло до взрыва проникать в грунт на нужную глубину Технология была разработана корпорацией Boeing в 1997 году по объединенному заказу ВВС И ВМС США. Во время “Второй Иракской” известен случай поражения 500 килограммовой JDAM иракского бункера, находившегося на глубине 18 метров под землей. Причем подрыв боевой части самой бомбы произошел на минус третьем уровне бункера, находившемся еще 12-ю метрами ниже. Сказано - сделано! У США появилась программа модернизации всех 400 “тактических” и 200 “запасных” В61 в новейшую модернизацию В61-12. Впрочем, ходят слухи, что “высотные” варианты под эту программу попадут тоже.

На фото из программы испытаний хорошо видно, что инженеры пошли именно таким путем. На хвостовик, торчащий за стабилизаторами внимания обращать не стоит. Это элемент крепления к испытательному стенду в аэродинамической трубе.

Важно отметить, что в центральной части изделия появилась вставка, в которой расположены маломощные ракетные двигатели, выхлоп сопел которых обеспечивает бомбе собственное вращение по продольной оси. В сочетании с головкой самонаведения и активными рулями, В61-12 теперь может планировать на дальность до 120 - 130 километров, позволяя самолету-носителю производить ее сброс без захода в зону ПВО цели.
20 октября 2015 года ВВС США провели бросковые испытания образца новой тактической термоядерной бомбы на полигоне в штате Невада, использовав в качестве носителя истребитель-бомбардировщик F-15E. Боеприпас без заряда уверенно поразил круг радиусом 30 метров.

Насчет точности (КВО):

Это значит, что формально американцам удалось (есть такое у них выражение) схватить Бога за бороду. Под соусом “просто модернизации одного очень-очень старого изделия”, которое, к тому же, ни под один из свежезаключенных договоров не подпадает, США создали “ядерное шило” с повышенной дальностью и точностью. С учетом особенностей физики ударной волны подземного взрыва и модернизации боевой части под 0,3 – 1,5 – 10 – 35 (по другим источникам до 50) килотонн, в проникающем режиме В61-12 может обеспечить такие же разрушения, как при обычном наземном взрыве мощностью от 750 до 1250 килотонн.

Правда, оборотной стороной успеха стали… деньги и союзники. На сами поиски решения, включая бросковые испытания на полигоне, с 2010 года Пентагон потратил всего 2 млрд. долларов, что по американским меркам сущие пустяки. Правда, возникает ехидный вопрос, что они такого нового там придумывали, если учесть, что самый дорогой серийный комплект оборудования для переоснащения сопоставимой по размеру и весу обычной фугасной авиабомбы типа GBU там стоит всего 75 тыс. дол? Ну да ладно, чего в чужой карман заглядывать.
Другое дело, что сами эксперты из NNSA прогнозируют размер расходов на переделку всего текущего боезапаса В61 в сумме, по меньшей мере в 8,1 млрд. долл. к 2024 году. Это если ничто никуда к тому моменту не подорожает, что для американских военных программ есть ожидание абсолютно фантастическое. Хотя… если даже этот бюджет поделить на 600 изделий, предполагающихся к модернизации, то калькулятор мне подсказывает, что денег понадобится как минимум по 13,5 млн. баксов за штуку. Куда уж тут еще дороже, учитывая розничную цену обычного комплекта “умности для бомбы”?

Впрочем, существует весьма ненулевая вероятность, что вся программа В61-12 полностью так и не будет реализована. Названная сумма уже вызвала серьезное недовольство Конгресса США, серьезно занятого поиском возможностей секвестра расходов и сокращения бюджетных программ. Включая оборонные. Пентагон, само собой, бьется на смерть. Заместитель министра обороны США по проблемам глобальной стратегии Мадлен Кридон заявила на слушаниях в Конгрессе, что “воздействие секвестра угрожает подорвать усилия [по модернизации ядерных боеприпасов] и способствовать дальнейшему росту незапланированных затрат за счет удлинения периодов разработки и производства”. По ее словам, уже в нынешнем виде сокращения бюджета к настоящему моменту привели к переносу сроков начала реализации программы модернизации В61 примерно на шесть месяцев. Т.е. начало серийного производства В61-12 сдвинулся до начала 2020 года.

С другой стороны, у заседающих в разных контрольно-наблюдательных и всяких там бюджетно-финансовых комиссиях гражданских конгрессменов для секвестра существует свой резон. Самолет F-35, рассматривающийся в качестве основного носителя новых термоядерных авиабомб, все еще толком не летает. Программа его поставок в войска уже в который раз сорвана и неизвестно, будет ли она исполнена вообще. Европейские партнеры по НАТО все больше выражают озабоченность по поводу опасности повышения “тактической заточенности” модернизированных В61 и неизбежный “какой-то ответ со стороны России”. А она уже успела за прошедшие несколько лет продемонстрировать способность парировать новые угрозы категорически ассиметричными способами. Как бы не получилось так, что в результате ответных мер Москвы, ядерная безопасность в Европе, вопреки сладким речам Вашингтона, не увеличилась, а, наоборот, как бы не уменьшилась. Они все чаще цепляются за стремление к безъядерному статусу Европы. И модернизированные термоядерные бомбы их совершенно не радуют. Разве что новый премьер-министр Великобритании в своем первом выступлении при вступлении в должность что-то там про ядерное сдерживание пообещала. Остальные же, особенно Германия, Франция и Италия, так вообще не стесняются заявлять, что против реально у них существующих проблем с мигрантами и террористических угроз тактическое ядерное оружие может помочь в наименьшей степени.

Но деваться Пентагону все равно некуда. Если не модернизировать эти бомбы в ближайшие 4 – 8 лет, то “ржа сожрет” и половину текущего боезапаса…А еще через пяток лет вопрос модернизации может сняться сам собой, так сказать, в виду пропадания предмета для модернизации.
И, кстати, с начинкой боеголовок стратегического ядерного оружия у них ведь те же проблемы…

источники

12 августа 1953 года на Семипалатинском полигоне была испытана первая советская водородная бомба.

А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.

Разрушительную силу которого при взрыве никому не остановить. Какая самая мощная бомба в мире? Чтобы ответить на этот вопрос, нужно разобраться в особенностях тех или иных бомб.

Что такое бомба?

Атомные электростанции работают по принципу высвобождения и сковывания ядерной энергии. Этот процесс обязательно контролируется. Высвобожденная энергия переходит в электричество. Атомная бомба приводит к тому, что происходит цепная реакция, которая совершенно не поддается контролю, а огромное количество освобожденной энергии наносит чудовищные разрушения. Уран и плутоний - не такие уж и безобидные элементы таблицы Менделеева, они приводят к глобальным катастрофам.

Атомная бомба

Чтобы понять, какая самая мощная атомная бомба на планете, узнаем обо всем подробнее. Водородные и атомные бомбы относятся к атомной энергетике. Если объединить два кусочка урана, но каждый будет иметь массу ниже критической, то этот «союз» намного превысит критическую массу. Каждый нейтрон участвует в цепной реакции, потому что расщепляет ядро и высвобождает еще 2-3 нейтрона, которые вызывают новые реакции распада.

Нейтронная сила совершенно не поддается контролю человека. Меньше чем за секунду сотни миллиардов новообразованных распадов не только освобождают огромное количество энергии, но и становятся источниками сильнейшей радиации. Этот радиоактивный дождь покрывает толстым слоем землю, поля, растения и все живое. Если говорить о бедствиях в Хиросиме, то можно заметить, что 1 грамм стал причиной гибели 200 тысяч человек.

Принцип работы и преимущества вакуумной бомбы

Считается, что вакуумная бомба, созданная по новейшим технологиям, может конкурировать с ядерной. Дело в том, что вместо тротила здесь используется газовое вещество, которое мощнее в несколько десятков раз. Авиационная бомба повышенной мощности - самая мощная вакуумная бомба в мире, которая не относится к ядерному оружию. Она может уничтожить противника, но при этом не пострадают дома и техника, а продуктов распада не будет.

Каков принцип ее работы? Сразу после сбрасывания с бомбардировщика срабатывает детонатор на некотором расстоянии от земли. Корпус разрушается и распыляется огромнейшее облако. При смешивании с кислородом оно начинает проникать куда угодно - в дома, бункеры, убежища. Выгорание кислорода образует везде вакуум. При сбрасывании этой бомбы получается сверхзвуковая волна и образуется очень высокая температура.

Отличие вакуумной бомбы американской от российской

Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров. После взрыва образуется облако, которое, увеличиваясь в размерах, может проникать в убежища и уже там взрываться. Американские же боеголовки начиняются обыкновенным тротилом, поэтому разрушают здания. Вакуумная бомба уничтожает определенный объект, так как обладает меньшим радиусом. Неважно, какая бомба самая мощная - любая из них наносит несопоставимый ни с чем разрушительный удар, поражающий все живое.

Водородная бомба

Водородная бомба - еще одно страшное ядерное оружие. Соединение урана и плутония порождает не только энергию, но и температуру, которая повышается до миллиона градусов. Изотопы водорода соединяются в гелиевые ядра, что создает источник колоссальной энергии. Водородная бомба самая мощная - факт. Достаточно всего лишь представить, что взрыв ее равен взрывам 3000 атомных бомб в Хиросиме. Как в США, так и в бывшем СССР можно насчитать 40 тысяч бомб различной мощности - ядерных и водородных.

Взрыв такого боеприпаса сопоставим с процессами, которые наблюдается внутри Солнца и звезд. Быстрые нейтроны с огромной скоростью расщепляют урановые оболочки самой бомбы. Выделяется не только тепло, но и радиоактивные осадки. Насчитывают до 200 изотопов. Производство такого ядерного оружия дешевле, чем атомного, а его действие может быть усилено во сколько угодно раз. Это самая мощная взорванная бомба, которую испытали в Советском Союзе 12 августа 1953 года.

Последствия взрыва

Результат взрыва водородной бомбы носит тройной характер. Самое первое, что происходит - наблюдается мощнейшая взрывная волна. Ее мощность зависит от высоты проводимого взрыва и типа местности, а также степени прозрачности воздуха. Могут образовываться большие огненные ураганы, которые не успокаиваются в течение нескольких часов. И все же вторичное и наиболее опасное последствие, которое может вызвать самая мощная термоядерная бомба - это радиоактивное излучение и заражение окружающей местности на длительное время.

Радиоактивные остатки после взрыва водородной бомбы

При взрыве огненный шар содержит в себе множество очень маленьких радиоактивных частиц, которые задерживаются в атмосферном слое земли и надолго там остаются. При соприкосновении с землей этот огненный шар создает раскаленную пыль, состоящую из частиц распада. Сначала оседает крупная, а затем более легкая, которая при помощи ветра разносится на сотни километров. Эти частицы можно разглядеть невооруженным глазом, например, такую пыль можно заметить на снегу. Она приводит к летальному исходу, если кто-либо окажется поблизости. Самые мелкие частицы могут много лет находиться в атмосфере и так «путешествовать», несколько раз облетая всю планету. Их радиоактивное излучение станет более слабым к тому моменту, когда они выпадут в виде осадков.

Ее взрыв способен в считаные секунды стереть Москву с лица земли. Центр города запросто бы испарился в прямом смысле слова, а все остальное могло бы превратиться в мельчайший щебень. Самая мощная бомба в мире стерла бы и Нью-Йорк со всеми небоскребами. После него остался бы двадцатикилометровый расплавленный гладкий кратер. При таком взрыве не получилось бы спастись, спустившись в метро. Вся территория в радиусе 700 километров получила бы разрушения и заразилась радиоактивными частицами.

Взрыв «Царь-бомбы» - быть или не быть?

Летом 1961 года ученые решили провести испытание и понаблюдать за взрывом. Самая мощная бомба в мире должна была взорваться на полигоне, расположенном на самом севере России. Огромная площадь полигона занимает всю территорию острова Новая Земля. Масштаб поражения должен был составить 1000 километров. При взрыве зараженными могли остаться такие промышленные центры, как Воркута, Дудинка и Норильск. Ученые, осмыслив масштабы бедствия, взялись за головы и поняли, что испытание отменяется.

Места для испытания знаменитой и невероятно мощной бомбы не было нигде на планете, оставалась только Антарктида. Но на ледяном континенте тоже не получилось провести взрыв, так как территория считается международной и получить разрешение на подобные испытания просто нереально. Пришлось снизить заряд этой бомбы в 2 раза. Бомбу все-таки взрывали 30 октября 1961 года в том же месте - на острове Новая Земля (на высоте около 4 километров). При взрыве наблюдался чудовищный огромный атомный гриб, который поднимался ввысь на 67 километров, а ударная волна трижды обогнула планету. Кстати, в музее «Арзамас-16», в городе Саров, можно на экскурсии посмотреть кинохронику взрыва, хотя утверждают, что это зрелище не для слабонервных.