Как узнать какая кристаллическая решетка у вещества. Строение веществ

В природе есть два вида твердых тел, которые заметно различаются своими свойствами. Это аморфные и кристаллические тела. И аморфные тела не имеют точной температуры плавления, они во время нагревания постепенно размягчаются, а затем переходят в текучее состояния. Примером таких веществ может служить смола или обычный пластилин. Но совсем по-другому дело обстоит с кристаллическими веществами. Они остаются в твердом состоянии до какой-то определенной температуры, и только достигнув ее, эти вещества расплавляются.

Здесь все дело в строении таких веществ. В кристаллических телах частицы, из которых они состоят, расположены в определенных точках. И если их соединить прямыми линиями, то получится некий воображаемый каркас, который так и называется - кристаллическая решетка. А типы кристаллических решеток могут быть самые разные. И по виду частиц, из которых они «построены», решетки делятся на четыре типа. Это ионная, атомная, молекулярная и

И в узлах соответственно, расположены ионы, и между ними существует ионная связь. могут быть как простыми (Cl-, Na+), так и сложными (OH-, SO2-). И такие типы кристаллических решеток могут содержать некоторые гидроксиды и оксиды металлов, соли и другие подобные вещества. Возьмем, к примеру, обычный хлорид натрия. В нем чередуются отрицательные ионы хлора и положительные ионы натрия, которые образуют кубическую кристаллическую решетку. Ионные связи в такой решетке весьма устойчивы и вещества, «построенные» по такому принципу, имеют достаточно высокую прочность и твердость.

Есть также типы кристаллических решеток, называемых атомными. Здесь в узлах расположены атомы, между которыми существует сильная ковалентная связь. Атомную решетку имеют не очень много веществ. К ним относится алмаз, а также кристаллический германий, кремний и бор. Есть еще некоторые сложные вещества, которые содержат и имеют, соответственно, атомную кристаллическую решетку. Это горный хрусталь и кремнезем. И в большинстве случаев такие вещества очень прочные, твердые и тугоплавкие. Также они практически нерастворимы.

А молекулярные типы кристаллических решеток имеют самые разные вещества. К ним относится замерзшая вода, то есть обычный лед, «сухой лед» - затвердевший оксид углерода, а также твердый сероводород и хлороводород. Еще молекулярные решетки имеют много твердых органических соединений. К ним относится сахар, глюкоза, нафталин и прочие подобные вещества. А молекулы, находящиеся в узлах такой решетки, связаны между собой полярными и неполярными химическими связями. И несмотря на то, что внутри молекул между атомами существуют прочные ковалентные связи, сами эти молекулы держатся в решетке за счет очень слабых межмолекулярных связей. Поэтому такие вещества достаточно летучи, легко плавятся и не обладают большой твердостью.

Ну а металлы имеют самые разные виды кристаллических решеток. И в их узлах могут находиться как атомы, так и ионы. При этом атомы могут легко превращаться в ионы, отдавая свои электроны в «общее пользование». Таким же образом ионы, «захватив» свободный электрон, могут становиться атомами. И такое решетки определяет такие свойства металлов, как пластичность, ковкость, тепло- и электропроводимость.

Также типы кристаллических решеток металлов, да и других веществ, делятся на семь основных систем по форме элементарных ячеек решетки. Самой простой является кубическая ячейка. Есть также ромбические, тетрагональные, гексагональные, ромбоэдрические, моноклинные и триклинные элементарные ячейки, которые определяют форму всей кристаллической решетки. Но в большинстве случаев кристаллические решетки являются более сложными, чем те, что перечислены выше. Это связано с тем, что элементарные частицы могут находиться не только в самих узлах решетки, а и в ее центре или на ее гранях. И среди металлов наиболее распространены такие три сложные кристаллические решетки: гранецентрированная кубическая, объемно-центрированная кубическая и гексагональная плотноупакованная. Еще физические характеристики металлов зависят не только от формы их кристаллической решетки, а и от межатомного расстояния и от других параметров.

Согласно атомно-молекулярной теории Бойля, все вещества состоят из молекул, которые находятся в постоянном движении. Но существует ли какая-то определённая структура в веществах? Или они просто состоят из хаотично движущихся молекул?

Виды кристаллических решёток

В действительности чёткую структуру имеют все вещества, пребывающие в твёрдом состоянии. Атомы и молекулы движутся, но силы притяжения и отталкивания между частицами сбалансированы, поэтому атомы и молекулы располагаются в определённой точке пространства (но продолжают совершать небольшие колебания, зависящие от температуры). Такие структуры называются кристаллическими решётками . Места, в которых находятся сами молекулы, ионы или атомы, называют узлами . А расстояния между узлами получили название – периоды идентичности . В зависимости от положения частиц в пространстве, различают несколько типов:

  1. атомная;
  2. ионная;
  3. молекулярная;
  4. металлическая.

В жидком и газообразном состоянии вещества не имеют чёткой решётки, их молекулы движутся хаотично, именно поэтому они не имеют формы. Например, кислород, находясь в газообразном состоянии, представляет собой бесцветный газ без запаха, в жидком (при -194 градусов) – раствор голубоватого цвета. Когда температура опускается до -219 градусов, кислород переходит в твёрдое состояние и приобретает кр. решётку, при этом он превращается в снегообразную массу синего цвета.

Интересно, что у аморфных веществ нет чёткой структуры, поэтому у них и нет строгой температуры плавления и кипения. Смола и пластилин при нагревании постепенно размягчаются и становятся жидкими, у них нет чёткой фазы перехода.

Атомная кристаллическая решётка

В узлах находятся атомы, о чём и говорит название. Эти вещества очень крепкие и прочные , так как между частицами образуется ковалентная связь. Соседние атомы образуют между собой общую пару электронов (а, точнее, их электронные облака наслаиваются друг на друга), и поэтому они очень хорошо связаны друг с другом. Самый наглядные пример – алмаз, который по шкале Мооса обладит наибольшей твёрдостью. Интересно, что алмаз, как и графит, состоит из углевода. Графит является очень хрупким веществом (твёрдость по шкале Мооса – 1), что является наглядным примером того, как много зависит от вида.

Атомная кр. решётка плохо распространена в природе, к ней относятся: кварц, бор, песок, кремний, оксид кремния (IV), германий, горный хрусталь. Для этих веществ характерна высокая температура плавления, прочность, а также эти соединения очень твёрдые и нерастворимые в воде. Из-за очень сильной связи между атомами, эти химические соединения почти не взаимодействуют с другими и очень плохо проводят ток.

Ионная кристаллическая решётка

В этом типе ионы располагаются в каждом узле. Соответственно, этот вид характерен для веществ с ионной связью, например: хлорид калия, сульфат кальция, хлорид меди, фосфат серебра, гидроксид меди и так далее. К веществам с такой схемой соединения частиц относятся ;

  • соли;
  • гидроксиды металлов;
  • оксиды металлов.

Хлорид натрия имеет чередование положительных (Na +) и отрицательных (Cl -) ионов. Один ион хлора, находящийся в узле, притягивает к себе два иона натрия (благодаря электромагнитному полю), которые находятся в соседних узлах. Таким образом, образуется куб, в котором частицы связаны между собой.

Для ионной решётки характерна прочность, тугоплавкость, устойчивость, твёрдость и нелетучесть. Некоторые вещества могут проводить электрический ток.

Молекулярная кристаллическая решётка

В узлах этой структуры находятся молекулы, которые плотно упакованы между собой. Для таких веществ характерна ковалентная полярная и неполярная связь. Интересно, что независимо от ковалентной связи, между частицами образуете очень слабое притяжение (из-за слабых ван-дер-вальсовых сил). Именно поэтому такие вещества очень хрупкие, обладают низкой температурой кипения и плавления, а также они летучие. К таким веществам относятся: вода, органические вещества (сахар, нафталин), оксид углерода (IV), сероводород, благородные газы, двух– (водород, кислород, хлор, азот, йод), трёх- (озон), четырёх- (фосфор), восьмиатомные (сера) вещества и так далее.

Одна из отличительных черт - это то, что структурная и пространственная модель сохраняется во всех фазах (как в твёрдых, так в жидких и газообразных).

Металлическая кристаллическая решётка

Из-за наличия в узлах ионов, может показаться, что металлическая решетка похожа на ионную. На самом деле, это две совершенно разные модели, с разными свойствами.

Металлическая гораздо гибче и пластичнее ионной, для неё характерна прочность, высокая электро- и теплопроводность, эти вещества хорошо плавятся и отлично проводят электрический ток. Это объясняется тем, что в узлах находятся положительно заряженные ионы металлов (катионы), которые могут перемещаться по всей структуре, тем самым обеспечивают течение электронов. Частицы хаотично движутся около своего узла (они не имеют достаточной энергии, чтобы выйти за пределы), но как только появляется электрическое поле, электроны образуют поток и устремляются из положительной в отрицательную область.

Металлическая кристаллическая решётка характерна для металлов, например: свинец, натрий, калий, кальций, серебро, железо, цинк, платина и так далее. Помимо прочего, она подразделяется ещё на несколько типов упаковок: гексагональная, объёмно центрированная (наименее плотная) и гранецентрированная. Первая упаковка характерна для цинка, кобальта, магния, вторая для бария, железа, натрия, третья для меди, алюминия и кальция.

Таким образом, от типа решётки зависят многие свойства, а также строение вещества. Зная тип, можно предсказать, к примеру, какой будет тугоплавкость или прочность объекта.

Видео

Дополнительную информацию о кристаллических решетках вы найдете в нашем видео.

Каталог заданий.
Экзаменационные задания

Сортировка Основная Сначала простые Сначала сложные По популярности Сначала новые Сначала старые
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word

Мо-ле-ку-ляр-ное стро-е-ние имеет

1) оксид крем-ния(IV)

2) нит-рат бария

3) хло-рид на-трия

4) оксид уг-ле-ро-да(II)

Решение.

Под строением вещества понимают, из каких частиц молекул, ионов, атомов построена его кристаллическая решетка. Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO 2 , SiC (карборунд), BN, Fe 3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки. Оксид кремния (IV) — связи ковалентные, вещество твердое, тугоплавкое, кристаллическая решетка атомная. Нитрат бария и хлорид натрия вещества с ионными связями — кристаллическая решетка ионная. Оксид углерода (II) это газ в молекуле ковалентные связи, значит, это правильный ответ, кристаллическая решетка молекулярная.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2012 по химии.

В твер­дом виде мо­ле­ку­ляр­ное стро­е­ние имеет

1) оксид крем-ния(IV)

2) хло­рид каль-ция

3) суль­фат меди (II)

Ре-ше-ние.

Под стро-е-ни-ем ве-ще-ства по-ни-ма-ют, из каких ча-стиц мо-ле-кул, ионов, ато-мов по-стро-е-на его кри-стал-ли-че-ская ре-шет-ка. Не-мо-ле-ку-ляр-ное стро-е-ние имеют ве-ще-ства с ион-ны-ми и ме-тал-ли-че-ски-ми свя-зя-ми. Ве-ще-ства, в мо-ле-ку-лах ко-то-рых атомы со-еди-не-ны ко-ва-лент-ны-ми свя-зя-ми, могут иметь мо-ле-ку-ляр-ные и атом-ные кри-стал-ли-че-ские ре-шет-ки. Атом-ные кри-стал-ли-че-ские ре-шет-ки: С (алмаз, гра-фит), Si, Ge, B, SiO 2 , SiC (кар-бо-рунд), BN, Fe 3 C, TaC, крас-ный и чёрный фос-фор. В эту груп-пу вхо-дят ве-ще-ства, как пра-ви-ло, твер-дые и ту-го-плав-кие ве-ще-ства.

Ве-ще-ства с мо-ле-ку-ляр-ной кри-стал-ли-че-ской ре-шет-кой имеет более низ-кие тем-пе-ра-ту-ры ки-пе-ния, чем все осталь-ные ве-ще-ства. По фор-му-ле не-об-хо-ди-мо опре-де-лить тип связи в ве-ще-стве, а затем опре-де-лить тип кри-стал-ли-че-ской ре-шет-ки. Оксид крем-ния (IV) — связи ко-ва-лент-ные, ве-ще-ство твер-дое, ту-го-плав-кое, кри-стал-ли-че-ская ре-шет-ка атом-ная. Хло-рид каль-ция и суль-фат меди - ве-ще-ства с ион-ны-ми свя-зя-ми — кри-стал-ли-че-ская ре-шет-ка ион-ная. В мо-ле-ку-ле йода ко-ва-лент-ные связи, и он легко воз-го-ня-ет-ся, зна-чит, это пра-виль-ный ответ, кри-стал-ли-че-ская ре-шет-ка мо-ле-ку-ляр-ная.

Ответ: 4

Источник: Демонстрационная версия ЕГЭ-2013 по химии.

Ион-ную кри­стал­ли­че­скую решётку имеет

1) оксид уг-ле-ро-да(II)

3) бро­мид маг-ния

Ре-ше-ние.

Не-мо-ле-ку-ляр-ное стро­е­ние имеют ве­ще­ства с ион­ны­ми и ме­тал­ли­че­ски­ми свя-зя-ми. Ве-ще-ства, в мо­ле­ку­лах ко-то-рых атомы со­еди­не­ны ко-ва-лент-ны-ми свя­зя­ми могут иметь мо­ле­ку­ляр­ные и атом­ные кри-стал-ли-че-ские ре-шет-ки. Атом­ные кри-стал-ли-че-ские ре-шет-ки: С (алмаз, гра-фит), Si, Ge, B, SiO2, SiC (кар-бо-рунд), BN, Fe3 C, TaC, крас­ный и чёрный фос-фор. В эту груп­пу вхо-дят ве-ще-ства, как пра-ви-ло, твер­дые и ту­го­плав­кие ве-ще-ства.

Ве-ще-ства с мо­ле­ку­ляр­ной кри-стал-ли-че-ской ре­шет­кой имеет более низ­кие тем-пе-ра-ту-ры ки-пе-ния, чем все осталь­ные ве-ще-ства. По фор­му­ле не-об-хо-ди-мо опре­де­лить тип связи в ве-ще-стве, а затем опре­де­лить тип кри­стал­ли­че­ской ре-шет-ки.

Ион-ную кри­стал­ли­че­скую ре-шет-ку имеет бро­мид маг-ния.

При осуществлении многих физических и химических реакций вещество переходит в твердое агрегатное состояние. При этом молекулы и атомы стремятся расположиться в таком пространственном порядке, при котором силы взаимодействия между частицами вещества были бы максимально сбалансированы. Этим и достигается прочность твердого вещества. Атомы, однажды заняв определенное положение, совершают небольшие колебательные движения, амплитуда которых зависит от температуры, но положение их в пространстве остается фиксированным. Силы притяжения и отталкивания уравновешивают друг друга на определенном расстоянии.

Современные представления о строении вещества

Современная наука утверждает, что атом состоит из заряженного ядра, несущего положительный заряд, и электронов, несущих заряды отрицательные. Со скоростью несколько тысяч триллионов оборотов в секунду электроны вращаются по своим орбитам, создавая вокруг ядра электронное облако. Положительный заряд ядра численно равен отрицательному заряду электронов. Таким образом, атом вещества остается электрически нейтральным. Возможные взаимодействия с другими атомами происходят тогда, когда электроны отсоединяются от родного атома, тем самым нарушая электрический баланс. В одном случае атомы выстраиваются в определенном порядке, который и называется кристаллической решеткой. В другом - за счет сложного взаимодействия ядер и электронов соединяются в молекулы различного вида и сложности.

Определение кристаллической решетки

В совокупности различные типы кристаллических решеток веществ представляют собой сетки с различной пространственной ориентацией, в узлах которых располагаются ионы, молекулы или атомы. Это стабильное геометрическое пространственное положение и называется кристаллической решеткой вещества. Расстояние между узлами одной кристаллической ячейки называется периодом идентичности. Пространственные углы, под которыми расположены узлы ячейки, называются параметрами. По способу построения связей кристаллические решетки могу быть простыми, базоцентрированными, гранецентрированными и объемно-центрированными. Если частицы вещества расположены лишь в углах параллелепипеда, такая решетка называется простой. Пример такой решетки показан ниже:

Если, кроме узлов, частицы вещества расположены и в середине пространственных диагоналей, то такое построение частиц в веществе имеет название объемно-центрированной кристаллической решетки. На рисунке этот тип показан наглядно.

Если кроме узлов в вершинах решетки имеется узел и в месте, где пересекаются воображаемые диагонали параллелепипеда, то перед вами - гранецентрированный тип решетки.

Виды кристаллических решеток

Различные микрочастицы, из которых состоит вещество, определяют различные типы кристаллических решеток. Они могут определять принцип построения связи между микрочастицами внутри кристалла. Физические типы кристаллических решеток - ионные, атомные и молекулярные. Сюда же относятся различные типы кристаллических решеток металлов. Изучением принципов внутреннего строения элементов занимается химия. Типы кристаллических решеток подробнее представлены ниже.

Ионные кристаллические решетки

Данные типы кристаллических решеток присутствуют в соединениях с ионным типом связи. В этом случае узлы решетки содержат ионы, обладающие противоположным электрическим зарядом. Благодаря электромагнитному полю, силы межионного взаимодействия оказываются достаточно сильными, и это обуславливает физические свойства вещества. Обычными характеристиками являются тугоплавкость, плотность, твердость и возможность проводить электрический ток. Ионные типы кристаллических решеток имеются у таких веществ, как поваренная соль, нитрат калия и прочие.

Атомные кристаллические решетки

Этот тип строения вещества присущ элементам, структуру которых определяет ковалентная химическая связь. Типы кристаллических решеток подобного рода содержат в узлах отдельные атомы, связанные между собой крепкими ковалентными связями. Подобный тип связи возникает тогда, когда два одинаковых атома «делятся» электронами, тем самым образуют общую пару электронов для соседних атомов. Благодаря такому взаимодействию ковалентные связи равномерно и сильно связывают атомы в определенном порядке. Химические элементы, которые содержат атомные типы кристаллических решеток, обладают твердостью, высокой температурой плавления, плохо проводят электрический ток и химически неактивны. Классическими примерами элементов с подобным внутренним строением можно назвать алмаз, кремний, германий, бор.

Молекулярные кристаллические решетки

Вещества, имеющие молекулярный тип кристаллической решетки, представляют собой систему устойчивых, взаимодействующих, плотноупакованных между собой молекул, которые расположены в узлах кристаллической решетки. В подобных соединениях молекулы сохраняют свое пространственное положение в газообразной, жидкой и твердой фазе. В узлах кристалла молекулы удерживаются слабыми ван-дер-ваальсовыми силами, которые в десятки раз слабее сил ионного взаимодействия.

Образующие кристалл молекулы могут быть как полярными, так и неполярными. Из-за спонтанного движения электронов и колебания ядер в молекулах электрическое равновесие может смещаться - так возникает мгновенный электрический момент диполя. Соответствующим образом ориентированные диполи создают силы притяжения в решетке. Двуокись углерода и парафин являются типичными примерами элементов с молекуляной кристаллической решеткой.

Металлические кристаллические решетки

Металлическая связь гибче и пластичней ионной, хотя может показаться, что обе они базируются на одном и том же принципе. Типы кристаллических решеток металлов объясняют их типичные свойства - такие, например, как механическая прочность, тепло- и электропроводность, плавкость.

Отличительной особенностью металлической кристаллической решетки является наличие положительно заряженных ионов металла (катионов) в узлах этой решетки. Между узлами находятся электроны, которые непосредственно участвуют в создании электрического поля вокруг решетки. Количество электронов, перемещающихся внутри этой кристаллической решетки, называется электронным газом.

При отсутствии электрического поля свободные электроны совершают хаотическое движение, беспорядочно взаимодействуя с ионами решетки. Каждое такое взаимодействие меняет импульс и направление движения отрицательно заряженной частицы. Своим электрическим полем электроны притягивают к себе катионы, уравновешивая их взаимное отталкивание. Хотя электроны считаются свободными, их энергии не хватает для того, чтобы покинуть кристаллическую решетку, поэтому эти заряженные частицы постоянно находятся в ее пределах.

Присутствие электрического поля придает электронному газу дополнительную энергию. Соединение с ионами в кристаллической решетке металлов не является прочным, поэтому электроны легко покидают ее пределы. Электроны двигаются по силовым линиям, оставляя позади положительно заряженные ионы.

Выводы

Огромное значение изучению внутреннего строения вещества уделяет химия. Типы кристаллических решеток различных элементов определяют практически весь спектр их свойств. Воздействуя на кристаллы и меняя их внутренне строение, можно добиться усиления нужных свойств вещества и удалить нежелательные, преобразовывать химические элементы. Таким образом, изучение внутренней структуры окружающего мира может помочь познать суть и принципы устройства мироздания.

Поговорим о твердых телах. Твердые тела можно разделить на две большие группы: аморфные и кристаллические . Разделять мы их будем по принципу есть порядок или нет.

В аморфных веществах молекулы располагаются хаотично. В их пространственном расположении нет никаких закономерностей. По сути, аморфные вещества – это очень вязкие жидкости, настолько вязкие, что твердые.

Отсюда и название: «а-» – отрицательная частица, «morphe» – форма. К аморфным веществам относятся: стекла, смолы, воск, парафин, мыло.

Отсутствие порядка в расположении частиц обусловливает физические свойства аморфных тел: они не имеют фиксированных температур плавления . По мере нагревания их вязкость постепенно снижается, и они также постепенно переходят в жидкое состояние.

В противоположность аморфным веществам существуют кристаллические. Частицы кристаллического вещества пространственно упорядочены. Это правильная структура пространственного расположения частиц в кристаллическом веществе называется кристаллической решеткой .

В отличии от аморфных тел, кристаллические вещества имеют фиксированные температуры плавления.

В зависимости от того какие частицы находятся в узлах решетки , и от того какие связи удерживают их различают: молекулярную , атомную , ионную и металлическую решетки.

Для чего принципиально важно знать, какая у вещества кристаллическая решетка? Что она определяет? Все. Структура определяет, как химические и физические свойства вещества .

Самый простой пример: ДНК. У всех организмов на земле она построена из одинакового набора структурных компонентов: нуклеотидов четырех видов. А какое многообразие жизни. Это все определяется структурой: порядком, в котором эти нуклеотиды расположены.

Молекулярная кристаллическая решетка.

Типичный пример вода – в твердом состоянии (лед). В узлах решетки находятся целые молекулы. И удерживают их вместе межмолекулярные взаимодействия : водородные связи, силы Ван-дер-Ваальса.

Связи эти слабые, поэтому молекулярная решетка – самая непрочная , температура плавления таких веществ низкая.

Хороший диагностический признак: если вещество имеет при нормальных условиях жидкое или газообразное состояние и/или имеет запах – то скорее всего у этого вещества молекулярная кристаллическая решетка. Ведь жидкое и газообразное состояния – это следствие того, что молекулы на поверхности кристалла плохо держатся (связи то слабые). И их «сдувает». Это свойство называется летучестью. А сдутые молекулы, диффундируя в воздухе доходят до наших органов обоняния, что субъективно ощущается как запах.

Молекулярную кристаллическую решетку имеют:

  1. Некоторые простые вещества неметаллов: I 2 , P, S (то есть все неметаллы, у которых не атомная решетка).
  2. Почти все органические вещества (кроме солей ).
  3. И как уже говорилось ранее, вещества при нормальных условиях жидкие, либо газообразные (будучи замороженными) и/или имеющие запах (NH 3 , O 2 , H 2 O, кислоты, CO 2).

Атомная кристаллическая решетка.

В узлах атомной кристаллической решетки, в отличие от молекулярной, располагаются отдельные атомы . Получается, что удерживают решетку ковалентные связи (ведь именно они связывают нейтральные атомы).

Классический пример – эталон прочности твердости – алмаз (по химической природе – это простое вещество углерод). Связи: ковалентные неполярные , так как решетку образуют только атомы углерода.

А вот, например, в кристалле кварца (химическая формула которого SiO 2) есть атомы Si и O. Поэтому связи ковалентные полярные .

Физические свойства веществ с атомной кристаллической решеткой:

  1. прочность, твердость
  2. высокие температуры плавления (тугоплавкость)
  3. нелетучие вещества
  4. нерастворимы (ни в воде, ни в других растворителях)

Все эти свойства обусловлены прочностью ковалентных связей.

Веществ в атомной кристаллической решеткой немного. Особой закономерности нет, поэтому их нужно просто запомнить:

  1. Аллотропные модификации углерода (C): алмаз, графит.
  2. Бор (B), кремний (Si), германий (Ge).
  3. Только две аллотропные модификации фосфора имеют атомную кристаллическую решетку: красный фосфор и черный фосфор. (у белого фосфора – молекулярная кристаллическая решетка).
  4. SiC – карборунд (карбид кремния).
  5. BN – нитрид бора.
  6. Кремнезем, горный хрусталь, кварц, речной песок – все эти вещества имеют состав SiO 2 .
  7. Корунд, рубин, сапфир – у этих веществ состав Al 2 O 3 .

Наверняка возникает вопрос: С – это и алмаз, и графит. Но они же совершенно разные: графит непрозрачный, пачкает, проводит электрический ток, а алмаз прозрачный, не пачкает и ток не проводит. Отличаются они структурой.

И то, и то – атомная решетка, но разная. Поэтому и свойства разные.

Ионная кристаллическая решетка.

Классический пример: поваренная соль: NaCl. В узлах решетки располагаются отдельные ионы : Na + и Cl – . Удерживает решетку электростатические силы притяжения между ионами («плюс» притягивается к «минусу»), то есть ионная связь .

Ионные кристаллические решетки довольно прочные, но хрупкие, температуры плавления таких веществ довольно высокие (выше, чем у представителей металлической, но ниже чем у веществ с атомной решеткой). Многие растворимы в воде.

С определением ионной кристаллической решетки, как правило, проблем не возникает: там, где ионная связь – там ионная кристаллическая решетка. Это: все соли , оксиды металлов , щелочи (и другие основные гидроксиды).

Металлическая кристаллическая решетка.

Металлическая решетка реализуется в простых веществах металлах . Ранее мы говорили, что все великолепие металлической связи можно понять лишь вместе с металлической кристаллической решеткой. Час настал.

Главное свойство металлов: электроны на внешнем энергетическом уровне плохо удерживаются, поэтому легко отдаются. Потеряв электрон металл превращается в положительно заряженный ион – катион:

Na 0 – 1e → Na +

В металлической кристаллической решетке постоянно протекают процессы отдачи, и присоединения электронов: от атома металла в одном узле решетки отрывается электрон. Образуется катион. Оторвавшийся электрон притягивается другим катионом (или этим же): вновь образуется нейтральный атом.

В узлах металлической кристаллической решетки находятся как нейтральные атомы, так и катионы металла. А между узлами путешествуют свободные электроны:

Эти свободные электроны называются электронным газом. Именно они обусловливают физические свойства простых веществ металлов:

  1. тепло- и электропроводность
  2. металлический блеск
  3. ковкость, пластичность

Это и есть металлическая связь: катионы металлов притягиваются к нейтральным атомам и все это «склеивают» склеивают свободные электроны.

Как определить тип кристаллической решетки.

P. S. Есть кое-что в школьной программе и программе ЕГЭ по этой теме то, с чем мы не совсем согласны. А именно: обобщение, о том, что любая связь металл-неметалл – это ионная связь. Это допущение, намеренно сделано, видимо, для упрощения программы. Но это ведет к искажению. Граница между ионной и ковалентной связью условная. У каждой связи есть свой процент «ионности» и «ковалентности». Связь с малоактивным металлом имеет малый процент «ионности», она больше похожа на ковалентную. Но по программе ЕГЭ, она «округляется» в сторону ионной. Это порождает, порой абсурдные вещи. Например, Al 2 O 3 – вещество с атомной кристаллической решеткой. О какой ионности здесь может идти речь. Только ковалентная связь может удерживать таким образом атомы. Но по стандарту «металл-неметалл» мы квалифицируем эту связь как ионную. И получается противоречие: решетка атомная, а связь ионная. Вот к чему приводит, излишнее упрощение.